December 18, 2024

Understanding ADHD in Older Adults: An Overlooked Concern

ADHD in Older Adults: Challenges, Insights, and the Need for Research

Attention deficit hyperactivity disorder (ADHD) is a neurodevelopmental condition that persists into adulthood for most individuals, affecting 60% to 90% of those diagnosed as children. However, understanding ADHD in older adults, particularly those over 50, remains limited. With the U.S. population aged 65+ projected to nearly double by 2050, this oversight has critical implications for healthcare.

A recent analysis of 20 studies (sample size: over 20 million) highlights ADHD prevalence in the elderly as 2.18% when community scales are used but only 0.23% when clinical diagnoses are reviewed in medical records. This discrepancy points to underdiagnosis and the need for clinician education. Furthermore, treatment rates are alarmingly low, with just 0.09% of elderly individuals receiving ADHD medications.

Current diagnostic criteria, still rooted in studies of youth, inadequately address age-specific symptoms. Barkley and Murphy’s screening tool is one step forward, but its moderate reliability signals the need for refinement. Diagnostic challenges grow more complex as clinicians must differentiate ADHD from cognitive changes due to aging, medical conditions, or psychiatric disorders like depression or dementia. The concurrent presence of conditions further complicates assessments and treatments.

Treatment hesitancy also hampers care. Concerns about cardiovascular risks, interactions with other medications, and lack of familiarity with ADHD medication dosing in older adults fuel clinician caution. While psychostimulants are generally safe when carefully managed, misconceptions about abuse and addiction persist, creating unnecessary barriers.

Conclusion:

Addressing ADHD in older adults requires dedicated clinician training to overcome biases, refine diagnostic tools, and balance medical risks with the significant quality-of-life benefits ADHD treatment offers. With more research, improved clinical protocols, and better education, older adults with ADHD can receive accurate diagnoses and effective treatment. This will help them maintain cognitive function and independence, significantly enhancing their lives.

Goodman, D. W., Cortese, S., & Faraone, S. V. (2024). Why is ADHD so difficult to diagnose in older adults? Expert Review of Neurotherapeutics, 24(10), 941–944. https://doi.org/10.1080/14737175.2024.2385932

Related posts

Reconsidering the Age-of-Onset Criterion in Older Adults Being Evaluated for ADHD

Reconsidering the Age-of-Onset Criterion in Older Adults Being Evaluated for ADHD

The current Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition (DSM-5) requires evidence of symptom onset before age 12 to make a diagnosis of ADHD in adults.

A recently published clinical review questions the appropriateness of this criterion in older adults 50 years old and above. It sets forth several reasons:

  • ADHD was first recognized in the DSM in 1968, just over fifty years ago. Anyone over fifty is highly unlikely to have been diagnosed with ADHD in childhood, or even to have symptoms properly noticed.
  • It is well-established that memories both fade and change with time. Even among young adults, only about half can recall the age at which specific memories occurred. For older adults, the challenge is much greater, and that means questionnaire answers become unreliable.
  • Episodic memory among persons with ADHD is known to be impaired relative to controls, which further limits the reliability of memory, especially over extended periods.

On the other hand, the reason for the early onset criterion is to avoid any confusion with early neurodegenerative diseases such as Alzheimer's or Lewy body dementia, which have overlapping symptoms.

The authors suggest a possible fix:

  • For those over fifty, readjust the under-12 criterion to instead demonstrate the longstanding previous existence of ADHD symptoms, without forcing it to include the first eleven years of life. They call for research to determine how many years of previous symptoms would best distinguish ADHD symptoms from normal aging and the onset of dementia.
  • Establish a family history of ADHD. Heritability estimates suggest that ADHD occurs in roughly half the parents of people with ADHD, and about 15% of grandparents. That means that for persons over 50, having children and/or grandchildren with ADHD would lend greater weight to self-reported ADHD symptoms.
  • Noting that "cognitive functioning rating scales(e.g., the Barkley Deficits in Executive Functioning Scale) have shown to align robustly with ADHD symptoms," they "call for studies investigating the use of these rating scales in older adult samples, and particularly their discriminant validity relative to other late-life disorders affecting cognition."
  • This would be accompanied by careful screening for physical or psychiatric comorbidities, to reduce the risk of false positives.

It is unethical, the authors suggest, to deny care to older, presently undiagnosed adults, given the demonstrated poor outcomes associated with untreated ADHD.

January 16, 2022

CDC: Prescriptions for ADHD Medications in Reproductive Age Women on Rise

CDC Reports increase in prescriptions for ADHD Medications in Reproductive Age Women

The CDC recently reported that ADHD medication use in women ages 15 to 44 increased from 0.9 percent to 4 percent from 2003 to 2015.  The most commonly used medications were formulations of amphetamine or methylphenidate.  

This increase in treatment for ADHD suggests that educational programs such as adhdinadults.com have been effective in teaching clinicians how to identify and treat the disorder.   The 4 percent rate reported by the CDC is encouraging because it is close to what Ron Kessler and colleagues reported as the prevalence of adult ADHD in the population.   CDC correctly points out that little is known about the effects of ADHD medications on pregnancies. Thus, caution is warranted.


Oei et al.'s review of amphetamines concluded: "There is little evidence of amphetamine-induced neurotoxicity and long-term neurodevelopmental impact, as data is scarce and difficult to extricate from the influence of other factors associated with children living in households where one or more parent uses drugs in terms of poverty and neglect. ... We suggest that exposed children may be at risk of ongoing developmental and behavioral impediment, and recommend that efforts be made to improve early detection of perinatal exposure and to increase the provision of early intervention services for affected children and their families"


Bolea-Alamanac et al.'s review of methylphenidate effects concluded: "There is a paucity of data regarding the use of methylphenidate in pregnancy and further studies are required. Although the default medical position is to interrupt any non-essential pharmacological treatment during pregnancy and lactation, in ADHD this may present a significant risk. Doctors need to evaluate each case carefully before interrupting treatment." These words of caution should be heeded by clinicians caring for women of reproductive age.

December 28, 2023

How Effective and Safe are Stimulant Medications for Older Adults?

How effective and safe are stimulant medications for older adults?

Older adults are at greater risk for cardiovascular disease. Psychostimulants may contribute to that risk through side effects, such as elevation of systolic blood pressure, diastolic blood pressure, and heart rate.

On the other hand, smoking, substance abuse, obesity, and chronic sleep loss - all of which are associated with ADHD - are known to increase cardiovascular risk, and stimulant medications are an effective treatment for ADHD.

So how does this all shake out? A Dutch team of researchers sets out to explore this. Using electronic health records, they compared all 139 patients 55 years and older at PsyQ outpatient clinic, Program Adult ADHD, in The Hague. Because a principal aim of the study was to evaluate the effect of medication on cardiovascular functioning after first medication use, the 26 patients who had previously been prescribed ADHD medication were excluded from the study, leaving a sample size of 113.

The ages of participants ranged from 55 from 79, with a mean of 61. Slightly over half were women. At the outset, 13 percent had elevated systolic and/or diastolic blood pressure, 2 percent had an irregular heart rate, 15 percent had an abnormal electrocardiogram, and 29 percent had some combination of these (a "cardiovascular risk profile"), and 21 percent used antihypertensive medication.

Three out of four participants had at least e comorbid disorder. The most common are sleep disorders, affecting a quarter of participants, and unipolar mood disorders (depressive or more rarely manic episodes, but not both), also affecting a quarter of participants.

Twenty-four patients did not initiate pharmacological treatment. Of the 89 who received ADHD medication, 58 (65%) reported positive effects, and five experienced no effect. Thirty-eight (43%) discontinued ADHD medication while at the clinic due to lack of effect or to side effects. The most commonly reported positive effects were enhanced concentration, more overview, less restlessness, more stable mood, and having more energy. The principal reasons for discontinuing medication were anxiety/depression, cardiovascular complaints, and lack of effect.

Methylphenidate raised heart rate and lowered weight, but had no significant effect on systolic and diastolic blood pressure. Moreover, there was no significant correlation between methylphenidate dosage and any of these variables, nor between methylphenidate users taking hypertensive medication and those not taking such medication. There was no significant difference in systolic or diastolic blood pressure and heart rate before and after the use of methylphenidate among patients with the cardiovascular risk profiles.

Systolic blood pressure rose in ten out of 64 patients, with two experiencing an increase of at least 20 mmHg. It descended in five patients, with three having a decrease of at least 20 mmHg. Diastolic blood pressure rose by at least 10 mmHg in four patients, while dropping at least 10 mmHg in five others.

The authors concluded "that the use of a low dose of ADHD-medication is well tolerated and does not cause clinically significant cardiovascular changes among older adults with ADHD, even among those with an increased cardiovascular risk profile. Furthermore, our older patients experienced significant and clinically relevant improvement of their ADHD symptoms using stimulants, comparable with what is found among the younger age group," and that "the use of methylphenidate may be a relatively safe and effective treatment for older adults with ADHD, under the condition that all somatic complaints and especially cardiovascular parameters are monitored before and during pharmacological treatment."

Yet they cautioned that "due to the observational nature of the study and the lack of a control group, no firm conclusions can be drawn as to the effectiveness of the stimulants used. ... Important factors that were not systematically reported were the presence of other risk factors, such as smoking, substance (ab)use, aspirin use, and level of physical activity. In addition, the response to medication was not systematically measured"

December 21, 2021

Swedish nationwide population study identifies top predictors of ADHD diagnoses among preschoolers

Most preschool-aged children diagnosed with ADHD also exhibit comorbid mental or developmental conditions. Long-term studies following these children into adulthood have demonstrated that higher severity of ADHD symptoms in early childhood is associated with a more persistent course of ADHD. 

The Study: 

Sweden has a single-payer national health insurance system that covers virtually all residents, facilitating nationwide population studies. An international study team (US, Brazil, Sweden) searched national registers for predictors of ADHD diagnoses among all 631,695 surviving and non-emigrating preschoolers born from 2001 through 2007.  

Preschool ADHD was defined by diagnosis or prescription of ADHD medications issued to toddlers aged three through five years old.  

Predictors were conditions diagnosed prior to the ADHD diagnosis. 

A total of 1,686 (2.7%) preschoolers were diagnosed with ADHD, with the mean age at diagnosis being 4.6 years. 

The Numbers:

Adjusting for sex and birth year, the team reported the following predictors, in order of magnitude: 

  • Previous diagnosis of autism spectrum disorder increased subsequent likelihood of ADHD diagnosis twentyfold. 
  • Previous diagnosis of intellectual disability increased subsequent likelihood of ADHD diagnosis fifteenfold. 
  • Previous diagnosis of speech/language developmental disorders and learning disorders, as well as motor and tic disorders, increased subsequent likelihood of ADHD diagnosis thirteen-fold. 
  • Previous diagnosis of sleep disorders increased subsequent likelihood of ADHD diagnosis fivefold. 
  • Previous diagnosis of feeding and eating disorders increased subsequent likelihood of ADHD diagnosis almost fourfold. 
  • Previous diagnosis of gastroesophageal reflux disease (GERD) increased subsequent likelihood of ADHD diagnosis 3.5-fold. 
  • Previous diagnosis of asthma increased subsequent likelihood of ADHD diagnosis 2.4-fold. 
  • Previous diagnosis of allergic rhinitis increased subsequent likelihood of ADHD diagnosis by 70%. 
  • Previous diagnosis of atopic dermatitis or unintentional injuries increased subsequent likelihood of ADHD diagnosis by 50%. 

The Conclusion: 

This large population study underscores that many conditions present in early childhood can help predict an ADHD diagnosis in preschoolers. Recognizing these risk factors early may aid in identifying and addressing ADHD sooner, hopefully improving outcomes for children as they grow

July 2, 2025

Northern Finnish Population Study Finds ADHD Slashes Higher Education Attainment, Comorbidity of ADHD + ODD much worse

Background:

Although ADHD typically begins in childhood, its symptoms frequently continue into adulthood, and it is widely acknowledged as having a lifelong prevalence for most persons with ADHD. 

ADHD symptoms are linked to poor academic performance, mainly due to cognitive issues like compromised working memory. These symptoms lead to long-term negative academic outcomes and difficulty in achieving higher educational degrees. 

Oppositional Defiant Disorder (ODD) often co-occurs with ADHD. In community samples, it appears in about 50–60% of those with ADHD. ODD symptoms include an angry or irritable mood, vindictiveness toward others, and argumentative or defiant behavior that lasts more than 6 months and significantly disrupts daily life.  

Since ODD tends to co-occur with ADHD, research on pure ODD groups without ADHD is limited, especially in community samples. This longitudinal study aimed to examine the impact of ADHD and ODD symptoms in adolescence on academic performance at age 16 and educational attainment by age 32. 

Study:

Finland, like other Nordic countries, has a single-payer health insurance system that includes virtually all residents. A Finnish research team used the Northern Finnish Birth Cohort to include all 9,432 children born from July 1, 1985, through June 30, 1986, and followed since then. 

ADHD symptoms were measured at age 16 using the Strengths and Weaknesses of ADHD symptoms and Normal-behaviors (SWAN) scale. 

Symptoms of ODD were screened using a 7-point rating scale similar to the SWAN scale, based on eight DSM-IV-TR criteria: “Control temper”, “Avoid arguing with adults”, “Follow adult requests or rules”, “Avoid deliberately annoying others”, “Assume responsibility for mistakes or misbehaviour”, “Ignore annoyances from others”, “Control anger and resentment”, and “Control spitefulness and vindictiveness.” 

Higher education attainments were determined at age 32. 

Results:

After adjusting for the educational attainments of the parents of the subjects, family type, and psychiatric disorders other than ADHD or ODD, males with ADHD symptoms at age 16 had a quarter, and females a little over a third, of the higher education attainments of peers without ADHD symptoms at age 32.  

With the same adjustments, males with ODD symptoms alone had two-thirds, and females 80%, of the higher education attainments of peers without ODD, but neither outcome was statistically significant. 

However, all participants with combined ADHD and ODD symptoms at age 16 had roughly one-fifth of the higher education attainments of peers without such symptoms upon reaching age 32. 

Interpretation: 

The team concluded, “The findings that emerged from this large longitudinal birth cohort study showed that the co-occurrence of ODD and ADHD symptoms in adolescence predicted the greatest deficits of all in educational attainment in adulthood.” 

This study highlights the significant, long-lasting impact that co-occurring ADHD and ODD symptoms can have on educational outcomes well into adulthood. It underscores the importance of addressing both disorders together during adolescence to help improve future academic success.

July 1, 2025

U.S. Nationwide Study Finds Down Syndrome Associated with 70% Greater Odds of ADHD

The Background:

Down syndrome (DS) is a genetic disorder resulting from an extra copy of chromosome 21. It is associated with intellectual disability. 

Three to five thousand children are born with Down syndrome each year. They have higher risks for conditions like hypothyroidism, sleep apnea, epilepsy, sensory issues, infections, and autoimmune diseases. Research on ADHD in patients with Down syndrome has been inconclusive. 

The Study:

The National Health Interview Survey (NHIS) is a household survey conducted by the National Center for Health Statistics at the CDC. 

Due to the low prevalence of Down syndrome, a Chinese research team used NHIS records from 1997 to 2018 to analyze data from 214,300 children aged 3 to 17, to obtain a sufficiently large and nationally representative sample to investigate any potential association with ADHD. 

DS and ADHD were identified by asking, “Has a doctor or health professional ever diagnosed your child with Down syndrome, Attention Deficit Hyperactivity Disorder (ADHD), or Attention Deficit Disorder (ADD)?” 

After adjusting for age, sex, and race/ethnicity, plus family highest education level, family income-to-poverty ratio, and geographic region, children and adolescents with Down syndrome had 70% greater odds of also having ADHD than children and adolescents without Down syndrome. There were no significant differences between males and females. 

The Take-Away:

The team concluded, “in a nationwide population-based study of U.S. children, we found that a Down syndrome diagnosis was associated with a higher prevalence of ASD and ADHD. Our findings highlight the necessity of conducting early and routine screenings for ASD and ADHD in children with Down syndrome within clinical settings to improve the effectiveness of interventions.” 

June 27, 2025