Study Suggests Certain ADHD Meds May Have Protective Effect On The Brain

Might methylphenidate have a protective effect on brain development?

Methylphenidate, a psychostimulant, is among the drugs most frequently prescribed to children with ADHD.

Using magnetic resonance imaging(MRI), studies have shown that as children mature, those with ADHD differ from controls in developing regionally thinner cortices (the folded outer layer of the cerebrum that is essential to rational thought) and smaller lower basal ganglia(structures linked to the thalamus in the base of the brain and involved in the coordination of movement). The cortical differences were found in the right medial frontal motor region, the left middle/inferior frontal gyrus, and the right posterior parieto-occipital region in children with ADHD who were not taking psychostimulants.

A Dutch/Norwegian team of researchers conducted a randomized, double-blind, placebo-controlled trial with 96 males recruited from Dutch clinical programs. 48 were boys aged 10-12 years, and 47 were men between the ages of 23 and 40. None had previously been on methylphenidate. There were no significant differences in baseline age, ADHD symptom severity, estimated intelligence quotient, the proportion of right-handedness, or region of interest brain characteristics between the placebo and medication groups.

The trial was carried out during the standard 17-week waiting list time for evaluation and treatment to begin so that those receiving a placebo during the trial would not ultimately be at a disadvantage. The same MRI scanner was used for all measurements, both before and after treatment.

Among the boys, the methylphenidate group showed increased thickness in the right medial cortex, while the placebo group showed cortical thinning. In adults, both groups showed cortical thinning. When converted into an estimated mean rate of change in cortical thickness for the right medial cortex, boys taking methylphenidate could expect to lose about 0.01 mm per year, versus about 0.14 mm for boys not on methylphenidate.

In the right posterior cortex, scans also showed reduced thinning in the methylphenidate treatment group, though to a lesser extent. But there was no reduced thinning in the left frontal cortex.

The authors noted several limitations. The sample size was small. Second, "because we did not detect significant relationships between changes in cortical [regions of interest] and changes in symptom severity, the functional significance remains uncertain." Third, the follow-up period was relatively short, not allowing any assessment of the longer-term effects of the medication. Fourth, the differences in effects on the three brain regions examined were uneven, contrary to what had been expected from previous studies. They recommended replication with larger groups and longer follow-ups.

February 11, 2022

Exercise Found To Improve Certain ADHD Symptoms

Meta-analysis finds physical activity improves executive functions in persons with ADHD

ADHD patients may substantially improve executive functions through persistent and protracted physical exercise.

Executive function(EF) is associated with the prefrontal cortex. It includes three core components: inhibitory control, cognitive flexibility, and working memory. Inhibitory control is the ability to avoid distractions, inhibit or control impulsive responses, and change to more thoughtful responses. Cognitive flexibility involves switching mental tasks or strategies, seeing problems from multiple perspectives, and identifying different ways of solving them. Working memory involves holding information in the mind ready for an ongoing processing.


Persons with neurodevelopmental disorders, including ADHD, are known to have EF deficits relative to their normally-developing counterparts.


An international research team conducted a comprehensive search of the peer-reviewed medical literature to identify studies that have explored how physical activity affects those deficits in persons with neurodevelopmental disorders, specifically ADHD.


They identified 34 studies with 1,058 participants, of which 13 with 400 looked specifically at ADHD. There was substantial geographic diversity in the ADHD studies, spanning the globe: the United States, Canada, Switzerland, Taiwan, South Korea, Iran, Israel, and Tunisia.


Among the ADHD studies, a meta-analysis found physical activity improved executive functions overall, with a large effect size. More specifically, it included twelve tests of inhibitory control, four for working memory, three for cognitive flexibility, and one each for switching and planning (there was often more than one tester in the study).


There was no sign of publication bias. There was, however, substantial heterogeneity between studies. A further breakdown indicated substantial divergence by type of physical activity, with a large effect size for sports, medium effect sizes for aerobic exercise and motor skills training, and small effect size for exergaming (video games that are also a form of exercise).


Session time also made a big difference. Sessions at least an hour long had large effect sizes, those between 45 minutes and an hour had medium effect sizes, and shorter sessions had smaller effect sizes.
Improvements in inhibitory control had large effect sizes, those in cognitive flexibility had medium-to-large effect sizes, and those in working memory had small-to-medium effect sizes. All of which suggest ADHD patients can substantially improve executive functions through persistent and protracted physical exercise.

February 5, 2022

How Effective is Cognitive Training for Preschool Children?

How effective is cognitive training for preschool children?

Further study is needed, but meta-analysis shows small, but not insignificant, effects of pre-school interventions on core executive functions.

A German team of researchers performed a comprehensive search of the medical literature and identified 35randomized controlled trials (RCTs) published in English that explored this question. Participating children were between three and six years old. Children with intellectual disabilities, sensory disabilities, or specific neurological disorders such as epilepsy were excluded.

The total number of participating preschoolers was over three thousand, drawn almost exclusively from the general population, meaning these studies were not specifically evaluating effects on children with ADHD. But given that ADHD results in poorer executive functioning, evidence of the effectiveness of cognitive training would suggest it could help partially reverse such deficits.

RCTs assign participants randomly to a treatment group and a group not receiving treatment but often receiving a placebo. But RCTs themselves vary in risk of bias, depending on:

  • whether the control condition was passive (i.e. waiting list or no treatment) or active/sham (an activity of similar duration and intensity to the treatment condition)
  • whether the outcome was measured by subjective rating (e.g. by questionnaires, susceptible to reporting biases) or more objective neuropsychological testing;
  • whether the assessment of outcome was by blinded assessors unaware of participants' treatment conditions;
  • whether there was a risk of bias from participants dropping out of the trial.

After evaluating the RCTs by these criteria, the team performed a series of meta-analyses.

Combining the 23 RCTs with over 2,000 children that measured working memory, they found that cognitive training led to robust moderate improvements. Looking only at the eleven most rigorously controlled studies strengthened the effect, with moderate-to-large gains.

Twenty-six RCTs with over 2,200 children assessed inhibitory control. When pooled, they indicated a small-to-moderate improvement from cognitive training. Including only the seven most rigorously controlled studies again strengthened the effect, boosting it into the moderate effect zone.

Twelve RCTs with over 1,500 participants tested the effects of cognitive training on flexibility. When combined, they pointed to moderate gains. Looking at only the four well-controlled studies boosted the effect to strong gains. Yet here there was evidence of publication bias, so no firm conclusion can be drawn.

Only four studies with a combined total of 119 preschoolers tested the effects on ADHD ratings. The meta-analysis found a small but non-significant improvement, very likely due to insufficient sampling. As the authors noted, "some findings of the meta-analysis are limited by the insufficient number of eligible studies. Specifically, more studies are needed which use blinded assessments of subjective ratings of ADHD ... symptoms ..."

The authors concluded that their meta-analyses revealed significant, mostly medium-sized effects of the preschool interventions on core EFs [executive functions] in studies showing the low risk of bias."

January 2, 2022

Can Neurofeedback Improve Executive Functions? New Meta-Analysis

New meta-analysis finds no improvement in executive functions from neurofeedback in children and adolescents

Meta-analysis show neurofeedback treatments resulted in no noticeable improvements in the working memory, response inhibition, or sustained attention of youth with ADHD.

Neurofeedback, also known as electroencephalogram (EEG) biofeedback, aims to help persons with ADHD train themselves to self-regulate patterns of brain activity associated with the disorder.

An example is theta-beta ratio frequency (TBR) training. Beta waves, with a frequency of 18 to 25 Hz, are associated with electrical activity when the brain is conscious or alert. Theta waves, with a frequency of 4 to 7 Hz, are associated with meditative, daydreaming, or drowsy states. In youths with ADHD, the theta to beta ratio tends to be elevated. TBR training seeks to reduce it.

Neurofeedback is often described as a promising emerging alternative or complement to pharmaceutical treatment. Previous meta-analyses have found neurofeedback can reduce symptoms of ADHD.

But what effect does it have on executive functions? A Thai research team based at Chiang Mai University conducted a comprehensive search of the peer-reviewed journal literature and identified ten studies with results suitable for meta-analysis.

A meta-analysis of all ten studies with a combined total, of 378 participants found no improvement whatsoever in response inhibition.

A second meta-analysis, of nine studies with a combined total of 349 participants, found no improvement in sustained attention.

Finally, a meta-analysis of three studies with a total of 121 participants likewise found no improvement in working memory.

In all three cases, there was no evidence of publication bias.

The authors concluded, "Results did not show the benefits of neurofeedback on executive functions assessed by neuropsychological tests."

December 15, 2021

Meta-analyses Suggest Physical Exercise is Effective Tool in Treating ADHD

Two meta-analyses suggest physical exercise is an effective tool in treating ADHD

Two recent meta-analyses, one by an Asian team, and the other by a European team, have reported encouraging results on the efficacy of physical exercise in treating ADHD among children and adolescents.

One, a Hong Kong-based team (Liang et al. 2021) looked at the effect of exercise on executive functioning.

The team identified fifteen studies with a combined total, of 493 participants that met the criteria for inclusion. As the authors noted, "only a few studies successfully blinded participants and therapists, due to the challenges associated with executing double-blind procedures in non-pharmacological studies."

After adjusting for publication bias, the meta-analysis of the fifteen studies found a large improvement in overall executive functioning.

The studies varied in which aspects of executive functioning were addressed. A meta-analysis of a subset of eleven studies encompassing 406 participants found a large improvement in inhibitory control. A meta-analysis of another subset, of eight studies with a total of 311 participants, found a large improvement in cognitive flexibility. Finally, a meta-analysis of a subset of five studies encompassing 198 participants found a small-to-medium improvement in working memory.

Nine studies involved acute (singular) exercise interventions lasting 5 to 30 minutes, while twelve studies involved chronic (regular) exercise interventions ranging from 6 to 12 weeks, with a total duration of 12 to 75 hours. The chronic exercise was more than twice as effective as acute exercise. The former resulted in large improvements in overall executive functioning, the latter in small-to-medium improvements.

No significant differences were found between aerobic exercises (such as running and swimming) and cognitively engaging exercises(such as table tennis and other ball games, and exergaming ... video games that are also a form of exercise, relying on technology that tracks body movements).

The authors concluded that "Chronic sessions of exercise interventions with moderate intensity should be incorporated as a treatment for children with ADHD to promote executive functions."

Meanwhile, a German study team (Seiffer et al. 2021) looked at the effects of regular, moderate-to-vigorous physical activity on ADHD symptoms in children and adolescents.

They found eleven studies meeting their criteria, with a combined total of 448 participants. A meta-analysis of all eleven studies found a small-to-moderate decline in ADHD symptoms. However, the three studies with blinded outcome assessors found a large and statistically highly significant decline in symptoms, whereas the eight studies with blinded outcome evaluators found only a small decline that was not statistically significant.

When compared with active controls using pharmacotherapy in a subgroup of two studies with 146 participants, pharmacotherapy held a small-to-moderate advantage that fell just short of statistical significance, most likely because of the relatively small sample size.

The authors concluded that moderate to vigorous physical activity (MVPA) "could serve as an alternative treatment for ADHD," but that additional randomized controlled trials "are necessary to increase the understanding of the effect regarding frequency, intensity, type of MVPA interventions, and differential effects on age groups."

December 5, 2021

Parents of Children With ADHD at Higher Risk for Traumatic Injury

Nationwide population study finds higher risk of traumatic injury among parents of children with ADHD

Previous population studies have shown that children with ADHD have a much higher risk of traumatic injuries than their normally developing peers, and that such risk can be greatly reduced with methylphenidate treatment.

But what about the parents of children with ADHD? How does their risk compare with that of parents of normally developing children?

Taiwan has a single-payer public health insurance system that maintains comprehensive healthcare records of virtually every resident.

A Taiwanese research team availed itself of the Taiwan Maternal and Child Health Database, which covers 99.8% of all births, to identify 81,401 fathers and 87,549 mothers who had at least one offspring with ADHD and 1,646,100 fathers and 1,730,941 mothers with no offspring with ADHD.

The team determined children's ADHD status based on either an inpatient diagnosis or four or more  diagnoses.

It looked for parental traumatic injuries including burn injury, fracture, and traumatic brain injury.

To address covariates, it adjusted for age, urbanicity, low-income level, and competing risk of death.

Adjusted for those covariates, parents of children with ADHD were 20% more likely to suffer bone fractures, 27% more likely to have traumatic brain injuries, and 30% more likely to have burn injuries requiring medical treatment than parents of normally developing children.

The elevated risks were significant across the board, but roughly twice as much s for mothers as for fathers of children with ADHD - up 30% vs 15% for bone fractures, up 35% vs 23% for burn injuries, and up 45% vs 21% for traumatic brain injuries.

The authors noted that ADHD is highly heritable and that the findings may in part point to undiagnosed adult ADHD.

Another contributing factor, they suggested, is that "studies have revealed that a high proportion of parents having children with ADHD experience depression and anxiety. Stress-related negative emotions (depression and anxiety) were shown to cause loss of concentration, thereby increasing the likelihood of accidental events such as traffic accidents and contributing to the increased risks of traumatic injury among parents of children  ADHD."

The much-higher elevated risk for mothers seems to support this hypothesis, because mothers continue to be the principal caregivers in Taiwan, and are thus more exposed to the behaviors of their children. The authors cited a study indicating that "diagnosis of ADHD for children was reported to be a predictor of increased caregiver burden."

They concluded, "Given that knowledge is fundamental to act, it is essential to educate the parents of children with ADHD on the increased risk of traumatic injuries they may have. ... The need for behavioral and pharmacological intervention in parents of children with ADHD should be evaluated, especially in the parents with undiagnosed ADHD or sub-threshold ADHD symptoms. It deserves further prospective studies with longer follow-up periods to explore whether undiagnosed ADHD, care burden of parents, and children's aggressive behaviors contribute to the increased risks of traumatic injuries in parents of children with ADHD."

December 7, 2023

Methylphenidate May Help Reduce Risk of Mortality in Youths with ADHD

Methylphenidate is associated with reduced risk of all-cause mortality in youths with ADHD in a nationwide population cohort study

Youths with ADHD are at higher risk of suicide, burn injuries, road injuries, and more generally all-cause mortality than normally developing children. Methylphenidate (MPH) is known to be effective in reducing ADHD symptoms. Can it also reduce the risk of all-cause mortality? A team of Taiwanese researchers, collaborating with two British researchers, explored that question by looking at a nationwide population cohort.

Taiwan has a single-payer national health insurance system that includes the entire population (99.6 percent coverage). Using the National Health Insurance Research Database (NHIRD), the team identified over 183,000 youths under 18 with an ADHD diagnosis. Of these, just over 68,000 had been prescribed to MPH. The team matched them with an equal number of ADHD youths who were not prescribed MPH. All records were anonymized and checked against the National Mortality Register.

All-cause mortality was split into two subcategories. Unnatural-cause mortality consisted of homicide, suicide, and motor vehicle fatalities. Natural-cause mortality encompassed all other premature deaths. In the raw data, ADHD youths on MPH had half the all-cause mortality of those not on MPH. Natural-cause mortality was down about 40 percent and unnatural-cause mortality was by almost two-thirds. In the non-MPH group, 32 committed suicide in the follow-up year, versus only a single individual in the MPH group. There were seven homicide victims in the non-MPH group, versus none at all in the MPH group.

These staggering reductions, however, were almost exclusively among males. The team then adjusted for potential confounding variables - gender, age, residence, insurance premium, out-patient visits, and pre-existing diagnoses. In the adjusted model, the risk for all-cause mortality was still reduced - by about 20 percent - for those on MPH and remained statistically significant. Virtually identical reductions were found for males and for children first diagnosed with ADHD between 4 and 7 years old. But all other risk estimates became statistically non-significant, due in large measure to the rarity of mortality events.

The authors concluded, "This is the first study reporting that a longer interval between first ADHD diagnosis and first prescription of MPH is associated with a higher risk of all-cause mortality. In addition, we also found that participants receiving longer-duration MPH treatment had a lower risk of all-cause mortality. ... an implication is that receiving a diagnosis earlier and receiving medication earlier may reduce the risk of later adverse consequences."

They nevertheless cautioned, "although we adjusted for multiple covariant, information lacking in the database precluded the measurement of other possible confounders, such as family history, psychosocial stressors, the effect of behavioral therapy or severity of comorbidities. Therefore, as with all observational data, it is not possible to be conclusive about whether the association with lower mortality is related to an effect of MPH treatment itself or whether other characteristics of the children receiving MPH may account for the lower risk (i.e. confounding by indication).

Finally, although the cohort sizes were large, the number of deaths was small, and this limited statistical power, particularly for the investigation of cause-specific mortality and of subgroup differences. Because of the relatively low number of deaths and limited follow-up duration, longer-term studies with larger samples are warranted ..."

October 30, 2023

Methylphenidate May Reduce Risk of Burn Injury in Children with ADHD

Methylphenidate reduces risk of burn injury in children with ADHD in nationwide population cohort study

Children with ADHD are at higher risk of getting severe burns than normally-developing children. Burn injuries can be traumatic, imposing physical, psychological, and economic burdens on children, their families, and society. Methylphenidate is known to be effective in reducing ADHD symptoms. Can it also reduce the risk of burn injuries?

A team of Taiwanese researchers collaborating with two British researchers explored that question by looking at a nationwide population cohort. Taiwan has a single-payer national health insurance system that includes the entire population (99.6 percent coverage). Using Taiwan's National Health Insurance Research Database(NHIRD), they identified over 90,000 youths under 18 years old with a diagnosis of ADHD. Youths who had burned injuries before diagnosis were excluded. ADHD youths were further divided into three groups: those not prescribed methylphenidate (over 22,000), those prescribed methylphenidate for less than 90 days (over 17,500), and those prescribed methylphenidates for 90 days or more(over 50,000).

Because methylphenidate is the only approved stimulant in Taiwan, it was the only stimulant analyzed in this study. Atomoxetine, a non-stimulant, is also approved in Taiwan, but only for those whose, outcomes with methylphenidate are suboptimal. It was only used by 4 percent of those on ADHD medication, and generally after prior use of methylphenidate, so there was no way to evaluate its effectiveness. Among ADHD youths not on methylphenidate, the proportion who got burn injuries was 6.7 percent. That dropped to 4.5 percent for those medicated for under 90 days, and to 2.9 percent for those on longer-term medication.

Calculations indicated that half of all burn injuries could have been prevented if all youths had been on methylphenidate. After adjusting for multiple confounders - seizure, intellectual disability, autism, conduct disorder, opposition defiant disorder, anxiety, depression, and psychotropic use (benzodiazepine, Z-drugs, antipsychotics, and antidepressants) that taking methylphenidate for any length of time was 38 percent less likely to suffer burn injuries. Moreover, longer-term medication had a greater beneficial effect. Those taking methylphenidate for under 90 days were 30 percent less likely to get burn injuries, whereas those taking it for 90 or more days were less than half as likely to get burn injuries as those not on methylphenidate.

The authors emphasized, "This nationwide population-based study has several strengths. First, the nationally representative sample was substantial and minimized selection bias. Second, patients with ADHD were identified through physician-based diagnoses. Third, all MPH [methylphenidate] prescriptions are recorded in the NHIRD, avoiding misclassification bias. Also, by excluding burn injuries before ADHD diagnosis, the reverse causal relationship between ADHD and burn injury was eliminated."

December 6, 2023

Sex Differences in ADHD Symptoms and Related Cognitive Deficits in Youths

Sex Differences in ADHD Symptoms and Related Cognitive Deficits in Youths

To what extent does sex matter in the expression of ADHD symptoms and associated cognitive deficits among youths with ADHD?

A recently published meta-analysis of 54 studies by a Canadian team of researchers at the University of Quebec at Montreal suggests it makes little to no difference. A meta-analysis of 26 studies with over 5,900 youths found no significant difference in inattention symptoms, and a meta-analysis of 24 studies with over 5,500 youths likewise found no difference in hyperactivity-impulsivity symptoms. Separating out hyperactivity and impulsivity made no difference.

Given these results, it's no surprise that a meta-analysis of 15 studies with over 3,500 youths again found no significant divergence between the sexes for total ADHD symptoms. Parents and teachers differed, however, in their ratings of symptoms. Whereas parents observed no differences, teachers reported boys had slightly more inattention and hyperactive-impulsive behaviors than girls. Turning to cognitive functions, a series of meta-analyses found no significant sex differences for interference control, working memory, and planning scores. But boys performed slightly worse on inhibition and motor response inhibition. While the raw data also showed boys slightly under-performing girls on cognitive flexibility, strong evidence of publication bias made this unreliable.

The team also compared youths with ADHD and youths without ADHD. Both for females and for males, those differences in ADHD symptoms were - as would be expected - extremely large, whether for total symptoms, inattention, or hyperactivity-impulsivity. All cognitive function scores were moderately better for normally developing boys compared with boys with ADHD, and for normally developing girls compared with girls with ADHD. Yet once again, when comparing these effect sizes between girls and boys, there were no significant differences for any of the symptom and cognitive function effects.

"In other words," the authors wrote, "boys and girls with ADHD presented significantly more primary symptoms and executive and attention deficits than did their peers without ADHD, and effect sizes were not significantly different between the sexes." They concluded, "girls with ADHD do not differ from boys with ADHD in many domains of cognitive functioning, and they have significantly more severe difficulties across the executive and attentional functions measured relative to girls without ADHD. This meta-analysis is the first to examine sex differences in cognitive flexibility, working memory, and planning."

December 11, 2023

How Extensive Is Perceived Discrimination Among Adults With ADHD?

How extensive is perceived discrimination among adults with ADHD?

An international team of mental health professionals used a nationally representative sample of English adults over age 16 to explore this question. Of 13,671 households selected, 7,461 were a little more than half participated.

Participants used the Adult ADHD Self-Report Scale (ASRS) Screener to assess symptoms of ADHD on a scale ranging from 0 to 24. Those scoring ≥ 14 were considered as having high levels of ADHD symptoms. They also responded to a computer-assisted self-interview that asked, "Have you been unfairly treated in the last 12 months … because of your mental health," requiring a yes or no answer.

The raw data showed an exponential relationship between levels of ADHD symptoms and mental health discrimination. Respondents scoring0-9 on the ASRS reported negligible discrimination (prevalence of 0.3%).  Among those scoring 10-13, the prevalence was 2.3%, rising to 5.5% of those with scores in the 14-17 range, and 18.8% among those in the 18-24 range.

After adjusting for sociodemographic variables (sex, age, ethnicity, marital status, educational attainment, and income), those with high levels of ADHD symptoms were nearly 10 times more likely to have experienced discrimination than others.  After adjusting for other psychopathology and stressful life events, this increased risk fell to 2.8.

The authors concluded, "This is an important finding given that mental health discrimination has been associated with detrimental consequences in individuals with mental health disorders and therefore might also be a factor in the negative outcomes that have been noted in adults with ADHD/ADHD symptomatology. As ADHD continues to be underdiagnosed and untreated in adults, the results of this study highlight the importance of identifying and treating these individuals and suggest that interventions to inform the public about ADHD may be important for reducing the stigma and discrimination associated with this condition."

August 11, 2021

New Insights Into The Brains of People Living with ADHD and ADHD Symptoms

New insights into the brains of people living with ADHD and those with ADHD symptoms.

In this study, researchers found subtle differences in the cortex of the brains of children with ADHD.

The ENIGMA-ADHD Working Group published a second large study on the brains of people with ADHD in the American Journal of Psychiatry this month. In this second study, the focus was on the cerebral cortex, which is the outer layer of the brain.

 ADHD symptoms include inattention and/or hyperactivity and acting impulsively. The disorder affects more than one in twenty (5.3%) children, and two-thirds of those diagnosed continue to experience symptoms as adults.
In this study, researchers found subtle differences in the brain's cortex when they combined brain imaging data on almost 4,000 participants from 37 research groups worldwide. The differences were only significant for children and did not hold for adolescents or adults. The childhood effects were most prominent and widespread for the surface area of the cortex. More focal changes were found in the thickness of the cortex. All differences were subtle and detected only at a group level, and thus these brain images cannot be used to diagnose ADHD or guide its treatment.


These subtle differences in the brain's cortex were not limited to people with the clinical diagnosis of ADHD: they were also present - in a less marked form - in youth with some ADHD symptoms. This second finding results from a collaboration between the ENIGMA-ADHD Working Group and the Generation Study from Rotterdam, which has brain images of, 2700 children aged 9-11 years from the general population. The researchers found more symptoms of inattention to be associated with a decrease in cortical surface area. Furthermore, siblings of those with ADHD showed changes to their cortical surface area that resembled their affected sibling. This suggests that familial factors such as genetics or shared environment may play a role in brain cortical characteristics.


This is the largest study to date to look at the cortex of people with ADHD. It included 2246 people with a diagnosis of ADHD and 1713 people without, aged between 4 and 63 years old. This is the second study published by the ENIGMA-ADHD Working Group; the first examined structures that are deep in the brain. The ADHD Working Group is one of over 50 working groups of the ENIGMA Consortium, in which international researchers pull together to understand the brain alterations associated with different disorders and the role of genetic and environmental factors in those alterations.


The authors say the findings could help improve understanding of the disorder. 'We identify cortical differences that are consistently associated with ADHD, by combining data from many research groups internationally. We find that the differences extend beyond narrowly-defined clinical diagnoses and are seen, in a less marked manner, in those with some ADHD symptoms and unaffected siblings of people with ADHD. This finding supports the idea that the symptoms underlying ADHD may be a continuous trait in the population, which has already been reported by other behavioral and genetic studies.'. In the future, the ADHD Working Group hopes to look at additional key features in the brain - such as the structural connections between brain areas - and to increase the representation of adults affected by ADHD, on whom limited research has been performed to date.

August 1, 2021

Are Shared Care Models Effective in Treating Childhood ADHD?

Are Shared Care Models Effective in Treating Childhood ADHD?

A systematic review found five studies that evaluated shared care models involving children and adolescents, in which primary care providers(PCPs) collaborated with mental health care providers in treating ADHD. The 655 participants ranged in age from 5 to 17. Two of the studies were randomized.

In one, the largest, with 321 participants, care managers acted as liaisons between PCPs and psychiatrists and provided psychoeducation and skills training for families. Effect sizes on the Vanderbilt ADHD Diagnostic Teacher Rating Scale were very small, ranging from a standardized mean difference (SMDs) of 0.07 to 0.12. Improvement on the Clinical Global Impression scale was also small (SMD = 0.3)and was not significant (p = 0.4).

In the other randomized study, with 63 participants, care managers also acted as liaisons between PCPs and a psychiatric decision support panel to provide Positive Parenting Training. The SNAP-IV hyperactivity/impulsivity score showed a medium effect size (SMD = 0.7), with a medium-to-large effect size (0.7) for improvement in social skills. The score difference for SNAP-IV inattention was not statistically significant. The other three studies followed groups of individuals over time.

In one cohort with 129 participants, PSPs consulted with psychiatrists by telephone; an evaluation, where necessary, was performed within 4 weeks. As assessed by the Clinical Global Impression-Severity scale, symptoms declined from moderately severe to mild or borderline. On the Children's Global Assessment Scale, there was an improvement from problems in more than one area of functioning to just one area.

In another cohort with 116 participants, care managers acted as liaisons between pediatricians and a psychiatrist and provided education to parents. Just over a quarter of participants showed improvement of greater than one standard deviation on the Vanderbilt ADHD Diagnostic Parent Rating Scale, and just under one in seven on the Vanderbilt ADHD Diagnostic Teacher Rating Scale.

The remaining cohort had only 26 participants. It offered PCPs access to outpatient psychiatric consultations within three weeks. PCPs reported a high level of satisfaction with their improved skills in mental health care. There was no evaluation of the effect on symptoms.

With varied study designs, methodologies, and outcomes, the authors of the review could only conclude "that PCP collaboration with psychiatrists may be associated with the increased comfort level. However, the association with symptom outcome and increased capacity was variable." Given that randomized studies report only small effects, these shared care models cannot be routinely recommended.

July 22, 2021

Immediate and Long-term Effects of Exercise on ADHD Symptoms and Cognition

Immediate and longer-term effects of exerciseon ADHD symptoms and cognition

A team of Spanish researchers has published a systematic review of 16 studies with a total of 728 participants exploring the effects of physical exercise on children and adolescents with ADHD. Fourteen studies were judged to be of high quality, and two of medium quality.

Seven studies looked at the acute effects of exercise on eight to twelve-year-old youths with ADHD. Acute means that the effects were measured immediately after periods of exercise lasting up to 30 minutes. Five studies used treadmills and two used stationary bicycles, for periods of five to 30 minutes. Three studies "showed a significant increase in the speed of reaction and precision of response after an intervention of 20-30 min, but at moderate intensity (50-75%)." Another study, however, found no improvement in mathematical problem-solving after 25 minutes using a stationary bicycle at low (40-50%) or moderate intensity (65-75%). The three others found improvements in executive functioning, planning, and organization in children after 20- to 30-minute exercise sessions.

Nine studies examined longer-term effects, following regular exercise over many weeks. One reported that twenty consecutive weekly yoga sessions improved attention. Another found that moderate to vigorous physical activity (MVPA) led to improved behavior beginning in the third week, and improved motor, emotional and attentional control, by the end of five weeks. A third study reported that eight weeks of starting the school day with 30 minutes of physical activity led to improvement in Connor's ADHD scores, oppositional scores, and response inhibition. Another study found that twelve weeks of aerobic activity led to declines in bad mood and inattention. Yet another reported that thrice-weekly 45-minute sessions of MVPA over ten weeks improved not only muscle strength and motor skills, but also attention, response inhibition, and information processing.

Two seventy-minute table tennis per week over twelve weeks improved executive functioning and planning, in addition to locomotor and object control skills.

Two studies found a significant increase in brain activity. One involved two hour-long sessions of rowing per week for eight weeks, the other three 90-minute land-based sessions per week for six weeks. Both studies measured higher activation of the right frontal and right temporal lobes in children, and lower theta/alpha ratios in male adolescents.

All 16 studies found positive effects on cognition. Five of the nine longer-term studies found positive effects on behavior. No study found any negative effects. The authors of the review concluded that physical activity "improves executive functions, increases attention, contributes to greater planning capacity and processing speed and working memory, improves the behavior of students with ADHD in the learning context, and consequently improves academic performance." Although the data are limited by a lack of appropriate controls, they suggest that, in addition to the well-known positive effects of physical activity, one may expect to see improvements in ADHD symptoms and associated features, especially for periods of sustained exercise.

July 18, 2021

Mindfulness-Based Cognitive Therapy for Adults with ADHD

Mindfulness-Based Cognitive Therapy for Adults with ADHD

A Dutch study compared the efficacy of mindfulness-based cognitive therapy (MBCT) combined with treatment as usual (TAU), with TAU-only as the control group. MBCT consisted of an eight-week group therapy consisting of meditation exercises (body scan, sitting meditation, mindful movement), psychoeducation about ADHD, and group exercises. TAU consisted of usual treatment in the Netherlands, including medications and other psychological treatments. Sixty individuals were randomly assigned to each group. MBCT was taught in subgroups of 8 to 12 individuals. Patients assigned to TAU were not brought together in small groups. Baseline demographic and clinical characteristics were closely matched for both groups.

Outcomes were evaluated at the start, immediately following treatment, and again after 3 and 6 months using well-validated rating scales. Following treatment, the MBCT + TAU group outperformed the TAU group by an average of 3.4points on the Conner's Adult Rating Scale, corresponding to a standardized mean difference of .41. Thirty-one percent of the MBCT + TAU group made significant gains, versus 5% of the TAU group. 27% of MBCT +TAU patients scored a symptom reduction of at least 30 percent, as opposed to only 4% of TAU patients. Three and six-month follow-up effects were stable, with an effect size of .43.

The authors concluded, "that MBCT has significant benefits to adults with ADHD up to 6 months after post-treatment, about both ADHD symptoms and positive outcomes." Yet in their section on limitations, they overlook a potentially important one. There was no active placebo control. Those who were undergoing TAU-only were aware that they were not doing anything different from what they had been doing before the study. Hence, no substantial placebo response would be expected from this group during the intervention period (post-treatment they were offered an opportunity to undergo MBCT). Moreover, MBCT + TAU participants were gathered into small groups, whereas TAU participants were not. We, therefore, have no way of knowing what effect group interaction had on the outcomes because it was not controlled for. So, although these results are intriguing and suggest that further research is worthwhile, the work is not sufficiently rigorous to definitively conclude that MBCT should be prescribed for adults with ADHD.

June 8, 2021

Digital Media Use and ADHD

Digital Media Use and ADHD

A two-year study examined the effect of digital media use on ADHD symptoms in over 2500 adolescents. An earlier meta-analysis found that traditional media use (TV and video console games) was modestly associated with ADHD-like behaviors (Nikkelen et al 2014). The current study extends the examination to a large sample, with modern digital media delivery of high-intensity stimuli, including mobile platforms.

The authors used the Current Symptom Self-Report Scale (Barkley R 1998) to establish ADHD symptoms at baseline and six-month assessments over 24 months. None of the subjects reported having ADHD, study entry. Subjects were considered to be ADHD symptom-positive (the primary binary outcome) if they had greater than or equal to six inattentive and/or hyperactive-impulsive symptoms rated on this frequency-based scale (0-3). Modern digital media use was surveyed on a frequency basis for 14 media activities(including checking social media sites, texting, browsing, downloading or streaming music, posting pictures, online chatting, playing games, online shopping, and video chatting). The most common media activity was the high-frequency checking of social media. Of note, high-frequency engagement in each of the digital media activities was significantly, but moderately, associated with having ADHD symptoms at each six-month follow-up (OR 1.10), even after adjusting for covariates. High-frequency media use at baseline seemed to be associated with the development of ADHD symptoms.

Among the 495 students who reported no high-frequency media use at baseline, 4.6% met ADHD symptom criteria at follow-up. Among 114 students scoring 7 for high-frequency media use at baseline, 9.5% met the symptoms criteria. For the 51 students with a score of 14 for high-frequency media use at baseline, the rate was 10.5% (both comparisons were statistically significant).

This study is important in that it notes that an association between high-frequency digital media use (in current platforms and modalities) may be associated with the development of ADHD-like symptoms. A significant limitation of the study, as noted by the authors, is that ADHD-like symptoms do not establish a diagnosis of ADHD and do not assess impairment; therefore, these results must be interpreted with some caution. It does highlight that even with the current level of understanding, it might be prudent for clinicians to recommend limiting high-frequency media use for adolescent patients.

October 9, 2023

Can Computers Train the Brain to Cure ADHD?

Can Computers Train the Brain to Cure ADHD?

It sounds like science fiction, but scientists have been testing computerized methods to train the brains of ADHD people to reduce both ADHD symptoms and cognitive deficits such as difficulties with memory or attention.  

Two main approaches have been used: cognitive training and neurofeedback. Cognitive training methods ask patients to practice tasks aimed at teaching specific skills, such as retaining information in memory or inhibiting impulsive responses.

Currently, results from ADHD brain studies suggest that the ADHD brain is not very different from the non-ADHD brain, but that ADHD leads to small differences in the structure, organization, and functioning of the brain. The idea behind cognitive training is that the brain can be reorganized to accomplish tasks through a structured learning process. Cognitive retraining helps people who have suffered brain damage, so it was logical to think it might help the types of brain differences seen in ADHD people. Several software packages have been created to deliver cognitive training sessions to ADHD people.

Neurofeedback was applied to ADHD after it had been observed, in many studies, that people with ADHD have unusual brain waves as measured by the electroencephalogram (EEG). We believe that these unusual brain waves are caused by the different ways that the ADHD brain processes information. Because these differences lead to problems with memory, attention, inhibiting responses, and other areas of cognition and behavior, it was believed that normalizing the brain waves might reduce ADHD symptoms.

In a neurofeedback session, patients sit with a computer that reads their brain waves via wires connected to their heads. The patient is asked to do a task on the computer that is known to produce a specific type of brain wave.  The computer gives feedback via sound or a visual on the computer screen that tells the patient how 'normal' their brainwaves are. By modifying their behavior, patients learn to change their brain waves. The method is called neurofeedback because it gives patients direct feedback about how their brains are processing information.

Both cognitive training and neurofeedback have been extensively studied. If you've been reading my blogs about ADHD, you know that I play by the rules of evidence-based medicine. My view is that the only way to be sure that a treatment works is to see what researchers have published in scientific journals. The highest level of evidence is a meta-analysis of randomized controlled clinical trials. This ensures that many rigorous studies have been conducted and summarized with a sophisticated mathematical method.  

Although both cognitive training and neurofeedback are rational methods based on good science, meta-analyses suggest that they do not help reduce ADHD symptoms. They may be helpful for specific problems, such as problems with memory, but more work is needed to be certain if that is true. The future may bring better news about these methods if they are modified and become more effective. You can learn more about non-pharmacologic treatment for ADHD from a book I recently edited: Faraone, S. V. &Antshel, K. M. (2014). ADHD: Non-Pharmacologic Interventions. Child Adolesc Psychiatr Clin N Am 23, xiii-xiv.

October 5, 2023

Is ADHD a Serious Condition?

Is ADHD a Serious Condition?

In the popular media, ADHD has sometimes been portrayed as a minor condition or not a disorder at all. It is easy to find websites claiming that ADHD is an invention of the medical profession and that the symptoms used to diagnose the disorder are simply normal behaviors that have been "medicalized". These claims are wrong. They miss the main point of any psychiatric diagnostic process, which is to identify people who experience distress or disability due to a set of well-defined symptoms. So, does ADHD cause serious distress and disability? It is a serious psychiatric condition? To illustrate the strong evidence base for the "Yes" answer to that question, my colleagues and I constructed this infographic for our "Primer" about ADHD,http://rdcu.be/gYyV.It describes the many ways in which the symptoms of ADHD impact and impair the lives of children, adolescents, and adults with the disorder. We divided these 'impacts' into four categories: other disorders (both psychiatric and medical), psychological dysfunction, academic and occupational failure, social disability, and risky behaviors. Let's start with other health problems. We know from many studies that have followed ADHD children into adolescence and adulthood that having the disorder puts patients at risk for several psychiatric disorders, addictions, criminality, learning disabilities, and speech/language disorders. ADHD even increases the risk for-psychiatric diseases such as obesity, hypertension, and diabetes. Perhaps most worrisome is that people with ADHD have a small increased risk for premature death. This increased risk is due in part to their having other psychiatric and medical conditions and also to their risky behaviors which, as research documents, lead to accidents and traumatic brain injuries. In the category of psychological dysfunction,' we highlighted emotional dysregulation, which makes ADHD people quick to anger or fail to tame extreme emotions. Other serious psychological issues are low self-esteem and increased thoughts of suicide, which lead to more suicide attempts than for people without ADHD. This increased risk for suicide is small, but it is real. A more prevalent impact of ADHD is the broad category of social disability, which includes marital discord, poor parenting, legal problems, arrests, and incarceration. This typically starts in youth with poor social adjustment and conflict with parents, siblings, and friends. Another common impact of ADHD is on academic and vocational pursuits. ADHD youth are at risk for underachievement in school, repeating grades, and dropping out. As adults, they are more likely to be unemployed or underemployed, which leads to them having lower incomes than expected for their level of school achievement. So, don't believe anyone who claims that ADHD is not a disorder or is only a mild one. To be sure, there is a wide range of impairments among people with ADHD but, in the absence of treatment, they are at risk for adverse outcomes. Fortunately, the medications that treat ADHD have been documented to reduce this risk, which is why they are typically the first-line treatment for most people with ADHD.

May 3, 2021

How do Stimulants Modulate the Brain to Improve ADHD Symptoms?

How do Stimulants Modulate the Brain to Improve ADHD Symptoms?

The stimulants methylphenidate and amphetamine are well known for their efficacy in treating symptoms of ADHD in both youth and adults.   Although these medications have been used for several decades, relatively little is known about the mechanisms of action that lead to their therapeutic effect.    

New data about the mechanism comes from a meta-analysis by Katya Rubia and colleagues. They analyzed 14 functional magnetic resonance imaging (fMRI) data sets comprising 212 youth with ADHD.  Each of these data sets assessed the short-term effects of stimulants on fMRI-assessed brain activations. In the fMRI paradigm, ADHD and control participants are asked to do a neurocognitive task while the activity of their brains is being measured. Dr. Rubia and colleagues analyzed data from fMRI assessments of time discrimination, inhibition, and working memory, each of which is known to be deficient in ADHD patients.    

The meta-analysis found that the most consistent brain activations were seen in a region comprising the right inferior frontal cortex(IFC) and insula, even when the analysis was limited to previously medication-naïve patients. The implicated region of the brain is known to mediate cognitive control, time estimation, and attention.  Dr.Rubia also notes that other studies show that the IFC/Insula is needed for updating information and allocating attention to relevant stimuli.  

Another region implicate by the meta-analysis was the right putamen, a region that is rich in dopamine transporters. This finding is consistent with the fact that the dopamine transporter is the main target of stimulant medications.    

What is the potential clinical implication of these findings?  As Dr. Rubia and colleagues note, it is possible that the fMRI anomalies they identified could be used as a biomarker for ADHD or a biomarker to select patients who should respond optimally to stimulant medication. Although fMRI cannot be used as a clinical tool at this time, research of this sort is opening up new horizons for how we understand the etiology of ADHD and the mechanisms whereby medications exert their effects.

April 21, 2021

Cognitive Behavioral Therapy for ADHD: What is it? Does it work?

Cognitive Behavioral Therapy for ADHD: What is it? Does it work?

Cognitive Behavioral Therapy (CBT) is a one-to-one therapy, for adolescents or adults, where a therapist teaches an ADHD patient how thoughts, feelings, and behaviors are all interrelated and how each of these elements affects the others.  CBT emphasizes cognition or thinking because a major goal of this therapy is to help patients identify thinking patterns that lead to problem behaviors.  For example, the therapist might discover that the patient frequently has negative automatic thoughts such as "I'm stupid" in challenging situations. We call the thought 'automatic' because it invades the patient's consciousness without any effort. Thinking "I'm stupid" can cause anxiety and depression, which leads to failure. Thus, stopping the automatic thought will modify this chain of events and, hopefully, improve the outcome from failure to success.

CBT also educates patients about their ADHD and how it affects them in important daily activities.


For example, most ADHD patients need help with activity schedules, socializing, organizing their workspace, and controlling their distractibility. By teaching specific cognitive and behavioral skills, the therapist helps the patient deal with their ADHD symptoms productively. For example, some ADHD patients are very impulsive when conversing with others. They don't wait their turn during conversations and may blurt out irrelevant ideas. This can be annoying to others, especially in the context of school or business relationships. The CBT therapist helps the patient identify these behaviors and creates strategies for avoiding them.

So, does CBT work for ADHD? The evidence base is small, but when CBT has been used for adult ADHD, it has produced positive results in well-designed studies.   These studies typically compare patients taking ADHD medications with those taking ADHD medications and receiving CBT.  

So for now, it is best to consider CBT as an adjunct rather than a replacement for medication. There are even fewer studies of CBT for adolescents with ADHD.  These initial studies also suggest that CBT will be useful for adolescents with ADHD who are also taking ADHD medications.  Some data suggest that CBT can be successfully applied in the classroom, but the evidence base is very small.

How can this information be used by doctors and patients for treatment planning?  Current treatment guidelines suggest starting with an ADHD medication.  After a suitable medication and dose are found, the patient and doctor should determine if any problems remain.  If so, CBT should be considered an adjunct to ADHD medications.

April 19, 2021

A Brief History of ADHD

A Brief History of ADHD

I have too often seen on the Internet or media the statement that ADHD is a recent invention of psychiatrists and/or pharmaceutical companies. Such statements ignore the long history of ADHD that my colleague and I reviewed in our "Primer" about ADHD.  

ADHD has a long history. The first ADHD syndrome was described in a German medical textbook by Weikard in 1775. That's not a typo. The ADHD syndrome had been identified before the birth of the USA. Dr.Weikard did not use the term ADD or ADHD, yet he described a syndrome of hyperactivity and inattention that corresponds to what we call ADHD today.  

ADHD-like syndromes were described in Scotland in 1798 and in France in the late 19th century. The first description of an ADHD-like syndrome in a medical journal was by Dr. George Still in 1901 who described what he called a 'defect of moral control' in The Lancet. The discovery that stimulant drugs are effective in treating ADHD occurred in 1937 when Dr. Charles Bradley discovered that Benzedrine (an amphetamine compound) improved the behavior of children diagnosed with behavioral disorders. In subsequent years, several terms were used to describe children with ADHD symptoms. Examples are Kramer-Pollnow syndrome, minimal brain damage, minimal brain dysfunction, and hyperkinetic reaction.  

,It was not until the 1980s that the term Attention Deficit Disorder (ADD) came into widespread use with the publication of the American Psychiatric Association's Diagnostic and Statistical Manual (DSM).   During the ensuing decades, several changes were made to the diagnostic criteria and the term ADD was replaced with ADHD so as not to overemphasize either inattention or hyperactivity when diagnosing the disorder. And, as the graphic below describes, these new and better diagnostic criteria led to many breakthroughs in our understanding of the nature of the disorder and the efficacy of treatments. So, if you think that ADHD is an invention of contemporary society, think again. It has been with us for quite some time.

April 11, 2021

What is Sluggish Cognitive Tempo and is it Relevant to ADHD?

What is Sluggish Cognitive Tempo and is it Relevant to ADHD?

Over the past few decades, a consensus has emerged among psychopathologists that some patients exhibit a well-defined syndrome referred to as sluggish cognitive tempo or SCT.

There are no diagnostic criteria for SCT because it has not yet been accepted as a separate disorder by the American Psychiatric Association. People with SCT are slow-moving, indolent, and mentally muddled. They often appear to be lost in thoughts, daydreaming, drowsy or listless. In reviewing these symptoms and the literature, Barkley suggested that SCT be referred to as Concentration Deficit Disorder (CDD). This term is less pejorative, but is not yet commonly used.

Becker and colleagues recently evaluated the internal and external validity of SCT via a meta-analysis of 73 studies. Internal validity addresses the consistency of SCT symptoms as a measure of an underlying construct. Based on factor analytic studies using more than 19,000 participants, the authors concluded that the items purported to measure SCT are sufficiently correlated with one another to justify the idea that they measure the same underlying construct.

Further support for internal validity was found in studies reporting high test-retest and interrater reliability. As regards ADHD, the authors found that SCT correlated significantly with both inattentive (r = 0.72) and hyperactive-impulsive (r = 0.46) symptoms in adults. The greater correlation with inattentive symptoms makes sense given the nature of SCT symptoms. So these data confirm two key points about SCT: 1) it is associated with ADHD symptoms, and 2) it is a meaningful construct in its own right. Very little is known about the implications of SCT for the treatment of ADHD.  

In a naturalistic study of 88 children and adolescents with ADHD, Ludwig and colleagues examined the effect of SCT on the response of ADHD symptoms to methylphenidate. They found no significant differences in treatment response between subjects with and without SCT. McBurnett and colleagues tested the effects of atomoxetine on SCT in children with ADHD and dyslexia (ADHD+D) or dyslexia only. Atomoxetine treatment led to significant reductions in both ADHD symptoms and SCT outcomes.

Because controlling for changes in ADHD symptoms did not predict changes in SCT outcomes, the authors concluded that change in SCT in response to atomoxetine is mostly independent of change in ADHD. Although these data are preliminary and in need of replication, they do provide some guidance for clinicians dealing with ADHD patients who also have SCT.

March 26, 2021

How extensive is perceived discrimination among adults with ADHD?

How extensive is perceived discrimination among adults with ADHD?

How Extensive Is Perceived Discrimination Among Adults With ADHD?

An international team of mental health professionals used a nationally representative sample of English adults over age 16 to explore this question. Of 13,671 households selected, 7,461 (a little more than half) participated.

Participants used the Adult ADHD Self-Report Scale (ASRS) Screener to assess symptoms of ADHD on a scale ranging from 0 to 24. Those scoring ≥ 14 were considered as having high levels of ADHD symptoms. They also responded to a computer-assisted self-interview that asked, “Have you been unfairly treated in the last 12 months … because of your mental health,” requiring a yes or no answer.

The raw data showed an exponential relationship between levels of ADHD symptoms and mental health discrimination. Respondents scoring 0-9 on the ASRS reported negligible discrimination (prevalence of 0.3%). Among those scoring 10-13, the prevalence was 2.3%, rising to 5.5% of those with scores in the 14-17 range, and 18.8% among those in the 18-24 range.

After adjusting for sociodemographic variables (sex, age, ethnicity, marital status, educational attainment, and income), those with high levels of ADHD symptoms were nearly 10 times more likely to have experienced discrimination than others.  After adjusting for other psychopathology and stressful life events, this increased risk fell to 2.8.

The authors concluded, “This is an important finding given that mental health discrimination has been associated with detrimental consequences in individuals with mental health disorders and therefore might also be a factor in the negative outcomes that have been noted in adults with ADHD/ADHD symptomatology. As ADHD continues to be underdiagnosed and untreated in adults, the results of this study highlight the importance of identifying and treating these individuals and suggest that interventions to inform the public about ADHD may be important for reducing the stigma and discrimination associated with this condition.”

February 20, 2021

New Insights Into The Brains of People Living with ADHD and ADHD Symptoms

New insights into the brains of people living with ADHD and those with ADHD symptoms.

The ENIGMA-ADHD Working Group published their second large study on the brains of people with ADHD in the American Journal of Psychiatry this month. In this second study, the focus was on the cerebral cortex, which is the outer layer of the brain.

ADHD symptoms include inattention and/or hyperactivity and acting impulsively. The disorder affects more than one in 20 (5.3%) children, and two-thirds of those diagnosed continue to experience symptoms as adults.

In this study, researchers found subtle differences in the brain’s outer layer - the cortex - when they combined brain imaging data on almost 4,000 participants from 37 research groups worldwide. The differences were only significant for children and did not hold for adolescents or adults. The childhood effects were most prominent and widespread for the surface area of the cortex. More focal changes were found in the thickness of the cortex. All differences were subtle and detected only at a group level, and thus these brain images cannot be used to diagnose ADHD or guide its treatment.

These subtle differences in the brain’s cortex were not limited to people with the clinical diagnosis of ADHD: they were also present - in a less marked form - in youth with some ADHD symptoms. This second finding results from a collaboration between the ENIGMA-ADHD Working Group and the Generation-R study from Rotterdam, which has brain images on 2700 children aged 9-11 years from the general population. The researchers found more symptoms of inattention to be associated with a decrease in cortical surface area. Furthermore, siblings of those with ADHD showed changes to their cortical surface area that resembled their affected sibling. This suggests that familial factors such as genetics or shared environment may play a role in brain cortical characteristics.

This is the largest study to date to look at the cortex of people with ADHD. It included 2246 people with a diagnosis of ADHD and 1713 people without, aged between four and 63 years old. This is the second study published by the ENIGMA-ADHD Working Group; the first examined structures that are deep in the brain. The ADHD Working Group is one of over 50 working groups of the ENIGMA Consortium, in which international researchers pull together to understand the brain alterations associated with different disorders and the role of genetic and environmental factors in those alterations.

The authors say the findings could help improve understanding of the disorder. ‘We identify cortical differences that are consistently associated with ADHD by combining data from many different research groups internationally. We find that the differences extend beyond narrowly-defined clinical diagnoses and are seen, in a less marked manner, in those with some ADHD symptoms and in unaffected siblings of people with ADHD. This finding supports the idea that the symptoms underlying ADHD may be a continuous trait in the population, which has already been reported by other behavioral and genetic studies.’. In the future, the ADHD Working Group hopes to look at additional key features in the brain- such as the structural connections between brain areas – and to increase the representation of adults affected by ADHD, in whom limited research has been performed to date. 

See: https://ajp.psychiatryonline.org/doi/10.1176/appi.ajp.2019.18091033

February 4, 2021