Link Found Between ADHD Risk Genes and Reduced Estimated Life Expectancy

Association found between ADHD risk genes involved in dopamine signaling and reduced estimated life expectancy

Behavioral disinhibition is a trait associated with both ADHD and several genes that affect dopamine signaling. A new study by three American medical researchers set out to examine how these ADHD risk genes - DRD4 (dopamine 4 receptor density), DAT1 (dopamine 1 transporter), and DBH(dopamine beta-hydroxylase) - affect estimated life expectancy in young adulthood.

The method used was a longitudinal study of 131 hyperactive children and 71 matched controls through early adulthood. The original evaluations were done in 1979-1980, when both groups were children in the 4 to 12 age range. They were reevaluated in1987-1988 as adolescents aged 12 to 20. The next follow-up was in 1992-1996 in early adulthood, aged 19 to 25. The final follow-up was in 1998-2004, for adults aged 24 to 32. All agreed to physical examinations that formed the basis for calculating estimated life expectancy using actuarial tables that factor in the effects of smoking, body mass index, alcohol, and other risk factors of on expected longevity. Participants also provided blood samples that enabled gene typing.

For the DAT1 gene, participants who had the homozygous-repeat allele (9/9) had a five-year reduction in estimated life expectancy relative to those with the ten-repeat allele (10/10). Those with the intermediate (9/10) configuration had a three-year reduction in estimated life expectancy.

For the DBH Taq1 gene, those with a heterozygous (A1/A2) combination had almost a three-year reduction in estimated life expectancy relative to those with homozygous (A1/A1 or A2/A2)configurations.

For DRD4, on the other hand, no significant differences were found in estimated life expectancy.

In a related study, several background traits were found to be significantly predictive of variance estimated life expectancy. The largest of these was behavioral disinhibition, followed by verbal IQ, self-rated hostility, and a nonverbal fluency test. But no significant differences were found between any of the gene polymorphisms on any of these four measures, indicating that the present gene associations were independent of the background traits.

The researchers next sought to determine which variables used in the estimated life expectancy calculations were associated with the two significant genes. For DBH, one variable stood out. Those with the A1/A2 heterozygous pairings had almost twice the alcohol consumption of those with homozygous pairings (p = 0.023).

For DAT1, two variables stood out. Overall, the 9/9 pairings smoked two and a half times as much as the 10/10pairings, with the 9/10 pairings midway between the extremes (p = 0.036). They were also 73 percent more likely to be smokers relative to the 10/10 pairings, and 61 percent more likely relative to the 9/10 pairings. They also had significantly less education than the 10/10 pairings, with the 9/10 pairings again being intermediate (p = 0.027).

An obvious limitation of the study was its small sample size. The authors cautioned, our findings should be considered quite preliminary and in need of much greater research before being given much weight in the literature or public policy.

"With these limitations in mind, they concluded, the present study demonstrated that two ADHD risk genes (DB Hand DAT1) independently contributed to a reduction in ELE [estimated life expectancy] beyond the second-order variables of behavioral disinhibition, IQ, hostility, and nonverbal fluency that contributed in the related study to variation in ELE. The gene polymorphisms seemed to be influencing ELE through their affiliation with first-order or more proximal factors related to ELE such as education, smoking, alcohol use, and possibly exercise."

August 19, 2021

Researchers Have Found the First Risk Genes for ADHD

Researchers have found the first risk genes for ADHD

Our genes are very important for the development of mental disorders-including ADHD, where genetic factors capture up to 75% of the risk. Until now, the search for these genes had yet to deliver clear results.   In the 1990s, many of us were searching for genes that increased the risk for ADHD because we know from twin studies that ADHD had a robust genetic component.  Because I realized that solving this problem required many DNA samples from people with and without ADHD, I created the ADHD Molecular Genetics Network, funded by the US NIMH.  We later joined forces with the Psychiatric Genomics Consortium (PTC) and the Danish psych group, which had access to many samples.  
The result is a study of over 20,000 people with ADHD and 35,000 who do not suffer from it - finding twelve locations (loci) where people with a particular genetic variant have an increased risk of ADHD compared to those who do not have the variant.  The results of the study have just been published in the scientific journal Nature Genetics, https://www.nature.com/articles/s41588-018-0269-7.
These genetic discoveries provide new insights into the biology behind developing ADHD. For example, some genes have significance for how brain cells communicate with each other, while others are important for cognitive functions such as language and learning.
Our study used the genome-wide association study (GWAS)methodology because it allowed us to discover genetic loci anywhere on the genome.  The method assays DNA variants throughout the genome and determines which variants are more common among ADHDvs. control participants.  It also allowed for the discovery of loci having very small effects.  That feature was essential because prior work suggested that, except for very rare cases, ADHD risk loci would individually have small effects.
The main findings are:

A) we found 12 loci on the genome that we can be certain harbor DNA risk variants for ADHD.  None of these loci were traditional candidate genes' for ADHD, i.e., genes involved in regulating neurotransmission systems that are affected by ADHD medications.  Instead, these genes seem to be involved in the development of brain circuits.  
B) we found a significant polygenic etiology in our data, which means that there must be many loci(perhaps thousands) having variants that increase the risk for ADHD.  We will need to collect a much larger sample to find out which specific loci are involved;

We also compared the new results with those from a genetic study of continuous measures of ADHD symptoms in the general population. We found that the same genetic variants that give rise to an ADHD diagnosis also affect inattention and impulsivity in the general population.  This supports prior clinical research suggesting that, like hypertension and hypercholesteremia, ADHD is a continuous trait in the population.  These genetic data now show that the genetic susceptibility to ADHD is also a quantitative trait comprised of many, perhaps thousands, of DNA variants
The study also examined the genetic overlap with other disorders and traits in analyses that ask the questions: Do genetic risk variants for ADHD increase or decrease the likelihood a person will express other traits and disorders.   These analyses found a strong negative genetic correlation between ADHD and education. This tells us that many of the genetic variants which increase the risk for ADHD also make it more likely that a person will perform poorly in educational settings. The study also found a positive correlation between ADHD and obesity, increased BMI, and type-2 diabetes, which is to say that variants that increase the risk of ADHD also increase the risk of overweight and type-2 diabetes in the population. This work has laid the foundation for future work that will clarify how genetic risks combine with environmental risks to cause ADHD.  When the pieces of that puzzle come together, researchers will be able to improve the diagnosis and treatment of ADHD.

July 4, 2021

Link Found Between ADHD Risk Genes and Reduced Estimated Life Expectancy

Association found between ADHD risk genes involved in dopamine signaling and reduced estimated life expectancy

Behavioral disinhibition is a trait associated with both ADHD and several genes that affect dopamine signaling. Anew study by three American medical researchers set out to examine how threaded risk genes – DRD4 (dopamine 4 receptor density), DAT1 (dopamine 1transporter), and DBH (dopamine beta-hydroxylase) – affect estimated life expectancy in young adulthood.

The method used was a longitudinal study of 131 hyperactive children and 71 matched controls through early adulthood. The original evaluations were done in 1979-1980, when both groups were children in the 4 to 12 age range. They were reevaluated in1987-1988 as adolescents aged 12 to 20. The next follow-up was in 1992-1996 in early adulthood, aged 19 to 25. The final follow-up was in 1998-2004, as adults aged 24 to 32. All agreed to physical examinations that formed the basis for calculating estimated life expectancy using actuarial tables that factor in the effects of smoking, body mass index, alcohol, and other risk factors on expected longevity. Participants also provided blood samples that enabled gene typing.

For the DAT1gene, participants who had the homozygous nine-repeat allele (9/9) had an a five-year reduction in estimated life expectancy relative to those with the ten-repeat allele (10/10). Those with the intermediate (9/10) configuration had a three-year reduction in estimated life expectancy.

For the DBHTaq1 gene, those with a heterozygous (A1/A2) combination had almost a three-year reduction in estimated life expectancy relative to those with homozygous (A1/A1 or A2/A2) configurations.

For DRD4, on the other hand, no significant differences were found for estimated life expectancy.

In a related study, several background traits were found to be significantly predictive of variance in estimated life expectancy. The largest of these was behavioral disinhibition, followed by verbal IQ, self-rated hostility, and a nonverbal fluency test. But no significant differences were found between any of the gene polymorphisms on any of these four measures, indicating that the present gene associations were independent of the background traits.

The researchers next sought to determine which variables used in the estimated life expectancy calculations were associated with the two significant genes. For DBH, one variable stood out. Those with the A1/A2 heterozygous pairings had almost twice the alcohol consumption of those with homozygous pairings (p = 0.023).

For DAT1, two variables stood out. Overall, the 9/9 pairings smoked two and a half times as much as the 10/10 pairings, with the 9/10 pairings midway between the extremes(p = 0.036). They were also 73 percent more likely to be smokers relative to the 10/10 pairings, and 61 percent more likely relative to the 9/10 pairings. They also had significantly less education than the 10/10 pairings, with the 9/10pairings again being intermediate (p = 0.027).

An obvious limitation of the study was its small sample size. The authors cautioned, “our findings should be considered quite preliminary and in need of much greater research before being given much weight in the literature or in public policy.

“With these limitations in mind,” they concluded, “the present study demonstrated that two ADHD risk genes (DBH and DAT1) independently contributed to a reduction in ELE [estimated life expectancy] beyond the second order variables of behavioral disinhibition, IQ, hostility, and nonverbal fluency that contributed in the related study to variation in ELE. The gene polymorphisms seemed to be influencing ELE through their affiliation with first-order or more proximal factors related to ELE such as education, smoking, alcohol use, and possibly exercise.”

February 28, 2021