March 13, 2024
ADHD is associated with impaired executive functioning. Executive functions are a set of mental skills that include working memory, flexible thinking, and self-control. These are skills we use every day to learn, work, and manage daily life. Trouble with executive function can make it hard to focus, follow directions, and handle emotions.
A Chinese study team searched for studies on non-pharmacological treatments of children and adolescents with ADHD aged 5 to 18 years intended to improve their executive functioning.
An initial methodological weakness was the decision to combine studies using formal ADHD diagnoses based on professional psychiatric manuals (DSM 3/4/5 and ICD 10/11) and studies relying on other methods such as parent reports.
This lack of rigor in identifying ADHD is surprising given that the team used studies that directly measured executive functioning through neurocognitive tasks, excluding those that relied on parent- or teacher-reported questionnaires.
67 studies involving 74 training interventions met the criteria. Meta-analysis of all these studies, encompassing a total of 3,101 participants, suggested medium-to-large effect size improvements in executive functioning. There was evidence of publication bias, but trim-and-fill adjustment increased the estimated effect size to large.
Nevertheless, there were further methodological shortcomings:
In this case, subgroup analysis mostly failed to explain the heterogeneity, with a single exception. Meta-analysis of the 16 studies with 744 participants that explored executive function-specific curriculum found small-to-medium effect size improvements, with no heterogeneity.
Unfortunately, the team did not perform a separate publication bias analysis on this subgroup, just as it failed to do so on any of the other subgroups.
By far the strongest evidence of benefit came from meta-analysis of the 17 studies with 558 participants evaluating physical exercise. Here the outcome pointed to very large effect size improvements in executive functioning. Yet once again, heterogeneity was extremely high. Breaking this down further between aerobic exercise and cognitively engaged physical exercise made no difference. Both types had the same very high effect size, with very wide heterogeneity. Again, there was no separate evaluation of publication bias on this group.
Meta-analyses of thirteen studies of neurofeedback combining 444 participants, and fifteen studies of cognitive training encompassing 727 participants, both pointed to just-short-of-large effect size improvements in executive function. Meta-analysis of twelve studies of game-based training with 598 participants indicated medium effect size gains. But again, in all three subgroups there was great variation between studies, and no analysis of publication bias.
While these meta-analyses are suggestive of efficacy, especially for physical exercise interventions, their methodological shortcomings mean we will have to await more rigorous meta-analyses to draw any more settled conclusions. Moreover, these meta-analyses did not evaluate the adequacy of the control groups used in the trials, which is a big shortcoming given prior work showing that the effect of non-pharmacologic treatments are very weak or non-existent when adequate controls are used.
Hui Qiu, Xiao Liang, Peng Wang, Hui Zhang, and David H.K. Shum, “Efficacy of non-pharmacological interventions on executive functions in children and adolescents with ADHD: A systematic review and meta-analysis,” Asian Journal of Psychiatry (2023), 87:103692, https://doi.org/10.1016/j.ajp.2023.103692.