April 9, 2025

From Meds to Mindfulness: What Actually Works for Adult ADHD?

A new large-scale study has shed light on which treatments for attention-deficit/hyperactivity disorder (ADHD) in adults are most effective and best tolerated. 

Researchers analyzed 113 randomized controlled trials involving nearly 15,000 adults diagnosed with ADHD. These studies included medications (like stimulants and atomoxetine), psychological therapies (such as cognitive behavioral therapy), and newer approaches like neurostimulation.

The Findings

Stimulant medications (lisdexamfetamine and methylphenidate) as well as selective norepinephrine reuptake inhibitors (SNRI) (atomoxetine) were the only treatments that consistently reduced core ADHD symptoms—both from the perspective of patients and clinicians. It may be worth noting that atomoxetine, while effective, was less well tolerated, with more people dropping out due to side effects.

Psychological therapies such as CBT, mindfulness, and psychoeducation showed some benefits, but mainly according to clinician ratings—not necessarily from the patients themselves. Neurostimulation techniques like transcranial direct current stimulation also showed some improvements, but only in limited contexts and with small sample sizes.  

Conclusion 

So, what does this mean for people navigating ADHD in adulthood? Stimulant medications remain the most effective treatment for managing ADHD symptoms day-to-day but nonstimulant medication are not far behind, which is good given the problems we’ve had with stimulant shortages. This study also supports structured psychotherapy as a viable treatment option, especially when used in conjunction with medication. 

The study emphasizes the importance of ongoing, long-term research and the need for treatment plans that are tailored to the individual ADHD patient– Managing adult ADHD effectively calls for flexible, patient-centered care.

-----

Struggling with side effects or not seeing improvement in your day-to-day life? Dive into a step-by-step journey that starts with the basics of screening and diagnosis, detailing the clinical criteria healthcare professionals use so you can be certain you receive an accurate evaluation. This isn’t just another ADHD guide—it’s your toolkit for getting the care you deserve. This is the kind of care that doesn’t just patch up symptoms but helps you unlock your potential and build the life you want. Whether you’ve just been diagnosed or you’ve been living with ADHD for years, this booklet is here to empower you to take control of your healthcare journey.

Proceeds from the sale of this book are used to support www.ADHDevidence.org.

Get the guide now– Navigating ADHD Care: A Practical Guide for Adults

Ostinelli EG, Schulze M, Zangani C, Farhat LC, Tomlinson A, Del Giovane C, Chamberlain SR, Philipsen A, Young S, Cowen PJ, Bilbow A, Cipriani A, Cortese S. Comparative efficacy and acceptability of pharmacological, psychological, and neurostimulatory interventions for ADHD in adults: a systematic review and component network meta-analysis. Lancet Psychiatry. 2025 Jan;12(1):32-43. doi: 10.1016/S2215-0366(24)00360-2. PMID: 39701638.

Related posts

Are Nonpharmacologic Treatments for ADHD Useful?

Are Nonpharmacologic Treatments for ADHD Useful?

There are several very effective drugs for ADHD, and those treatment guidelines from professional organizations view these drugs as the first line of treatment for people with ADHD. The only exception is for preschool children where medication is only the first line of treatment for severe ADHD; the guidelines recommend that other preschoolers with ADHD be treated with non-pharmacologic treatments, when available. Despite these guidelines, some parents and patients have been persuaded by the media or the Internet that ADHD drugs are dangerous and that non-drug alternative are as good or even better. Parents and patients may also be influenced by media reports that doctors overprescribe ADHD drugs or that these drugs have serious side effects. Such reports typically simplify and/or exaggerate results from the scientific literature. Thus, many patients and parents of ADHD children are seeking non-drug treatments for ADHD. What are these non-pharmacologic treatments and do they work? My next series of blogs will discuss each of these treatments in detail. Here I'll give an overview of my evidenced-based taxonomy of non-pharmacologic treatments for ADHD described in more detail in a book I recently edited (Faraone, S. V. &Antshel, K. M. (2014). ADHD: Non-Pharmacologic Interventions. Child Adolesc Psychiatry Clin N Am 23, xiii-xiv.). I use the term "evidence-based" in the strict sense applied by the Oxford Center for Evidenced Based Medicine (OCEBM; http://www.cebm.net/). Most of the non-drug treatments for ADHD fall into three categories: behavioral, dietary, and neurocognitive. Behavioral interventions include training parents to optimize methods of reward and punishment for their ADHD child, teaching ADHD children social skills, and helping teachers apply principles of behavior management in their classrooms. Cognitive behavior therapy is a method that teaches behavioral and cognitive skills to adolescent and adult ADHD patients. Dietary interventions include special diets that exclude food coloring or eliminate foods believed to cause ADHD symptoms. Other dietary interventions provide supplements such as iron, zinc, or omega-3 fatty acids.  The neurocognitive interventions typically use a computer-based learning setup to teach ADHD patients cognitive skills that will help reduce ADHD symptoms. There are two metrics to consider when thinking about the evidence base for these methods. The first is the quality of the evidence. For example, a study of 10 patients with no control group would be a low-quality study, but a study of 100 patients randomized to either a treatment or control group would be of high quality and the quality would be even higher if the people's rating patient outcomes did not know who was in each group. The second metric is the magnitude of the treatment effect. Does the treatment dramatically reduce ADHD symptoms, or does it have only a small effect? This metric is only available for high-quality studies that compare people treated with the method and people treated with a 'control' method that is not expected to affect ADHD. I used a statistical metric to quantify the magnitude of the effect. Zero means no effect, and larger numbers indicate better effects on treating ADHD symptoms. For comparison, the effect of stimulant drugs for ADHD is about 0.9, which is derived from a very strong evidence base.  The effects of dietary treatments are smaller, about 0.4 to 0.5, but because the quality of the evidence is not strong, these results are not certain and the studies of food color exclusions apply primarily to children who have high intakes of such colorants. In contrast to the dietary studies, the evidence base for behavioral treatments is excellent, but the effects of these treatments on ADHD symptoms are very small, less than 0.1.  Supplementation with omega-3 fatty acids also has a strong evidence base, but the magnitude of the effect is also small (0.1 to 0.2). The neurocognitive treatments have modest effects on ADHD symptoms (0.2 to 0.4) but their evidence base is weak. This review of non-drug treatments explains why ADHD drug treatments are usually used first. The evidence base is stronger, and they are more effective in reducing ADHD symptoms. There is, however, a role for some non-drug treatments. I'll be discussing that in subsequent blog posts. See more evidence-based information about ADHD at www.adhdinadults.com

May 17, 2021

ADHD Treatment Decision Tree

ADHD Treatment Decision Tree

If you've ever wondered how experts make treatment recommendations for patients with ADHD, take a look at this ADHD treatment decision tree that my colleagues and I constructed for our "Primer" about ADHD,http://rdcu.be/gYyV.  

Although a picture is worth a thousand words, keep in mind that this infographic only gives the bare bones of a complex process. That said, it is telling that one of the first questions an expert asks is if the patient has a comorbid condition that is more severe than ADHD. The general rule is to treat the more severe disorder first and after that condition has been stabilized plan a treatment approach for the other condition. Stimulants are typically the first-line treatment due to their greater efficacy compared with non-stimulants.

When considering any medication treatment for ADHD safety is the first concern, which is why medical contraindications to stimulants, such as cardiovascular issues or concerns about substance abuse, must be considered. For very young children (preschoolers) family behavior therapy is typically used before medication. Clinicians also must deal with personal preferences.  Some parents and some adolescents and adults with ADHD simply don't want to take stimulant medications for the disorder. When that happens, clinicians should do their best to educate them about the costs and benefits of stimulant treatment.

If, as is the case for most patients, the doctor takes the stimulant arm of the decision tree, he or she must next decide if methylphenidate or amphetamine is more appropriate. Here there is very little guidance for doctors. Amphetamine compounds are a bit more effective, but can lead to greater side effects.  Genetic studies suggest that a person's genetic background provides some information about who will respond well to methylphenidate, but we are not yet able to make very accurate predictions. After choosing the type of stimulant, the doctor must next consider what duration of action is appropriate for each patient.

There is no simple rule here; the choice will depend upon the specific needs of each patient. Many children benefit from longer-acting medications to get them through school, homework, and late afternoon/evening social activities. Likewise for adults. But many patients prefer shorter-acting medications, especially as these can be used to target specific times of day and can also lower the burden of side effects.  

For patients taking down the non-stimulant arm of the decision tree, duration is not an issue but the patient and doctor must choose from among two classes of medications norepinephrine reuptake inhibitors or alpha-2-agonists. There are not a lot of good data to guide this decision but, again, genetics can be useful in some cases. Regardless of whether the first treatment is a stimulant or a non-stimulant, the patient's response must be closely monitored as there is no guarantee that the first choice of medication will work out well. In some cases, efficacy is low, or adverse events are high. Sometimes this can be fixed by changing the dose, and sometimes a trial of a new medication is indicated.

If you are a parent of a child with ADHD or an adult with ADHD, this trial-and-error approach can be frustrating. But don't lose hope. In the end, most ADHD patients find a dose and a medication that works for them. Last but not least, when medication leads to a partial response, even after adjusting doses and trying different medication types, doctors should consider referring the patient for a non-pharmacologic ADHD treatment.

You can read details about these in my other blogs, but here the main point is to find an evidence-based treatment. For children, the biggest evidence base is for behavioral family therapy. For adults, cognitive behavior therapy (CBT) is the best choice.  Except for preschoolers, the experts I worked with on this infographic did not recommend these therapies before medication treatment. The reason is that the medications are much more effective, and many non-pharmacologic treatments (such as CBT) have no data indicating they work well in the absence of medication.

April 3, 2021

Mindfulness-Based Cognitive Therapy for Adults with ADHD

Mindfulness-Based Cognitive Therapy for Adults with ADHD

A Dutch study compared the efficacy of mindfulness-based cognitive therapy (MBCT) combined with treatment as usual (TAU), with TAU-only as the control group. MBCT consisted of an eight-week group therapy consisting of meditation exercises (body scan, sitting meditation, mindful movement), psychoeducation about ADHD, and group exercises. TAU consisted of usual treatment in the Netherlands, including medications and other psychological treatments. Sixty individuals were randomly assigned to each group. MBCT was taught in subgroups of 8 to 12 individuals. Patients assigned to TAU were not brought together in small groups. Baseline demographic and clinical characteristics were closely matched for both groups.

Outcomes were evaluated at the start, immediately following treatment, and again after 3 and 6 months using well-validated rating scales. Following treatment, the MBCT + TAU group outperformed the TAU group by an average of 3.4points on the Conner's Adult Rating Scale, corresponding to a standardized mean difference of .41. Thirty-one percent of the MBCT + TAU group made significant gains, versus 5% of the TAU group. 27% of MBCT +TAU patients scored a symptom reduction of at least 30 percent, as opposed to only 4% of TAU patients. Three and six-month follow-up effects were stable, with an effect size of .43.

The authors concluded, "that MBCT has significant benefits to adults with ADHD up to 6 months after post-treatment, about both ADHD symptoms and positive outcomes." Yet in their section on limitations, they overlook a potentially important one. There was no active placebo control. Those who were undergoing TAU-only were aware that they were not doing anything different from what they had been doing before the study. Hence, no substantial placebo response would be expected from this group during the intervention period (post-treatment they were offered an opportunity to undergo MBCT). Moreover, MBCT + TAU participants were gathered into small groups, whereas TAU participants were not. We, therefore, have no way of knowing what effect group interaction had on the outcomes because it was not controlled for. So, although these results are intriguing and suggest that further research is worthwhile, the work is not sufficiently rigorous to definitively conclude that MBCT should be prescribed for adults with ADHD.

June 8, 2021

Population Study Finds Vastly Increased ADHD Medication Prescribing is Associated With Declining Overall Risk Reduction Benefits

The Background: 

Randomized clinical trials have shown ADHD medications are effective in reducing core ADHD symptoms. Moreover, large observational studies indicate that these medications are associated with lower risks of real-world outcomes, including injuries, crime, transport crashes, suicide attempts, and unnatural-cause mortality. 

Sweden’s ADHD medication use has soared. From 2006 to 2020, children’s use rose almost fivefold, and adults' use more than tenfold. This places Sweden among the highest globally in ADHD prescriptions. 

Research indicates that rising prescription rates are due to changes in diagnostic criteria and their interpretation, parental perception, and greater awareness of ADHD, rather than an actual increase in its prevalence. 

Sweden has a single-payer health insurance system that covers virtually its entire population, as well as a system of national registers that link health care records to other population databases.  

The Study:

A research team based in Sweden used that data to explore how the impact of ADHD medication on self-harm, injuries, traffic crashes, and crime has evolved with the dramatic increase in ADHD prescription rates. The team hypothesized that effects would decrease as medications were prescribed to a broader group of patients, including those with fewer impairments and risky behaviors who might not derive as much benefit from pharmacotherapy. 

The team identified all individuals aged 4 to 64 who were prescribed ADHD medication and living in Sweden in the fifteen years from 2006 through 2020. From this base cohort, they selected four specific cohorts for self-harm, unintentional injury, traffic crashes, and crime, consisting of individuals who experienced at least one relevant event during the study period. 

They used a self-controlled case series (SCCS) design to explore the link between ADHD medication use and outcomes. This approach allows individuals to serve as their own controls, accounting for confounders like genetics, socioeconomic status, or other constant characteristics during follow-up. 

A non-treatment period was defined as a gap of 30 days or more between two consecutive treatment periods. To examine the link between ADHD medication use and outcomes, the team divided follow-up time into consecutive periods for each individual. A new period began after a treatment switch. They estimated incidence rate ratios (IRRs) to compare the outcome event rates during medicated periods with non-medicated periods for the same individual. 

The team examined how ADHD medication outcomes varied with prescription prevalence across three periods: 2006-2010, 2011-2015, and 2016-2020, during which ADHD medication use continuously increased. 

The overall cohort encompassed almost a quarter million ADHD medication users: just over 57,000 for 2006-2010, just over 127,000 for 2011-2015, and slightly over 200,000 for 2016-2020. 

The Results:

ADHD medication use was linked to significantly lower rates of all studied outcomes during the study period. However, as prescription rates increased five to tenfold in the population, the strongest association for reduction in self-harm was observed between 2006 to 2010 (23% reduction in incidence rate) and was slightly reduced (below 20%) in the two more recent periods, though this change was not statistically significant.  

On the other hand, there was a significant decreasing trend in the reduction of incidence rate ratios for unintentional injury, with a 13% reduction in incidence rate in 2006-2010 decreasing over the two more recent periods to half that amount, 7%. For traffic crashes, a 29% reduction in incidence rate significantly diminished by more than half, to 13%. For crime, a 27% reduction in incidence rate from medication use significantly declined to 16%. 

When considering methylphenidate prescriptions only, these effects were partially attenuated for crime. A 28% reduction in the incidence rate for crime in 2006-2010 dropped to 19% in the two most recent periods, but the trend was not statistically significant. Nevertheless, there were no significant differences from the results in the larger cohort in any of the other categories.   

The Interpretation:

These outcomes were consistent with the team’s hypothesis. The researchers concluded, “While ADHD medications are consistently associated with reduced risk of serious real-world outcomes, the magnitude of these associations have decreased over time alongside rising prescription rates. This underscores the importance of continuously evaluating medication use in different patient populations.” 

August 29, 2025

Meta-analysis Finds Association Between Childhood Febrile Seizures and Subsequent ADHD

Febrile seizure (FS) is a type of childhood seizure accompanied by a fever. It is not caused by infection in the central nervous system or other triggers of acute seizures. It is the most common form of childhood seizure, with an occurrence of 2% to 5% in all infants and children between 6 months and 5 years old. 

Noting that “To the best of our knowledge, no systematic synthesis of literature has assessed the nature and magnitude of the association between FS and ADHD,” a Korean research team performed a systematic search of the medical literature followed by meta-analysis to explore any such association. 

Meta-analysis of twelve studies with a combined total of more than 950,000 persons found that childhood febrile seizures were associated with 90% greater odds of subsequent ADHD. Correcting for publication bias reduced this slightly to 80% greater odds of subsequent ADHD. 

Limiting the meta-analysis to the subset of four studies with over 33,000 participants that adjusted for known confounders strengthened the association. Children who had febrile seizures had greater than 2.6-fold greater odds of subsequently developing ADHD. There was no sign of publication bias, but there was substantial divergence in individual study outcomes (heterogeneity). 

Further limiting the meta-analysis to two studies with a combined 654 participants in which clinical ADHD diagnoses were made by specialists – the gold standard – produced the exact same outcome. In this case, heterogeneity dropped to zero. 

The team concluded, “Overall, our systematic review and meta-analysis has shown a significant positive association between childhood FS and later occurrence of ADHD. Our findings add to the growing body of evidence questioning the notion that childhood FS are universally benign. In addition, the results highlight the need for longitudinal studies to better understand the association between FS and ADHD.”  

August 26, 2025

Meta-analysis Finds Little Evidence in Support of Game-based Digital Interventions for ADHD

ADHD treatment usually involves a combination of medication and behavioral therapy. However, medication can cause side effects, adherence problems, and resistance from patients or caregivers. 

Numerous systematic reviews and meta-analyses have evaluated the effects of non-pharmacological interventions on ADHD. With little research specifically examining game-based interventions for children and adolescents with ADHD or conducting meta-analyses to quantify their treatment effectiveness, a Korean study team performed a systematic search of the peer-reviewed medical literature to do just that.  

The Study: 

To be included, studies had to be randomized controlled trials (RCTs) that involved children and adolescents diagnosed with ADHD. The team excluded RCTs that included participants with psychiatric conditions other than ADHD.  

Eight studies met these standards. Four had a high risk of bias.  

Meta-analysis of four RCTs with a combined total of 481 participants reported no significant improvements in either working memory or inhibition from game-based digital interventions relative to controls. 

Likewise, meta-analysis of three RCTs encompassing 160 children and adolescents found no significant improvement in shifting tasks relative to controls. 

And meta-analysis of two RCTs combining 131 participants reported no significant gains in initiating, planning, organizing, and monitoring abilities, nor in emotional control

The only positive results were from two RCTs with only 90 total participants that indicated some improvement in visuospatial short-term memory and visuospatial working memory.  

There was no indication of effect size, because the team used mean differences instead of standardized mean differences.  

Conclusion:

The team concluded, “The meta-analysis revealed that game-based interventions significantly improved cognitive functions: (a) visuospatial short-term memory … and (b) visuospatial working memory … However, effects on behavioral aspects such as inhibition and monitoring … were not statistically significant, suggesting limited behavioral improvement following the interventions.” 

Simply put, the current evidence does not support the effectiveness of game-based interventions in improving behavioral symptoms of ADHD in children and adolescents. The only positive results were from two studies with a small combined sample size, which does not qualify as a genuine meta-analysis. All the other meta-analyses performed with larger sample sizes reported no benefits.