September 6, 2021

Are there adverse effects to long-term treatment of ADHD with methylphenidate?


Methylphenidate (MPH) is one of the most widely-prescribed medications for children. Given that ADHD frequently persists over a large part of an individual’s lifespan, any side effects of medication initiated during childhood may well be compounded over time. With funding from the European Union, a recently released review of the evidence looked for possible adverse neurological and psychiatric outcomes.

From the outset, the international team recognized a challenge: “ADHD severity may be an important potential confounder, as it may be associated with both the need for long-term MPH therapy and high levels of underlying neuropsychiatric comorbidity.” Their searches found a highly heterogeneous evidence base, which made meta-analysis inadvisable. For example, only 25 of 39 group studies reported the presence or absence of comorbid psychiatric conditions; even among those, only one excluded participants with comorbidities. Moreover in only 24 of 67 studies was the type of MPH used (immediate or extended-release) specified. The team, therefore, focused on laying out an “evidence map” to help determine priorities for further research.

The team found the following breakdown for specific types of adverse events:

·  Low mood/depression. All three non-comparative studies found MPH safe. Two large cohort studies, one with over 2,300 participants, and the other with 142,000, favored MPH over the non-stimulant atomoxetine. But many other studies, including a randomized controlled trial (RCT), had unclear results. Conclusion: “the evidence base regarding mood outcomes from long-term MPH treatment is relatively strong, includes two well-powered comparative studies, and tends to favor MPH.”

·  Anxiety. Here again, all three non-comparative studies found MPH safe. But only two of seven comparative studies favored MPH, with the other five having unclear results. Conclusion: “while the evidence about anxiety as an outcome of long-term MPH treatment tends to favor MPH, the evidence base is relatively weak.”

·   Irritability/emotional reactivity. A large cohort study with over 2,300 participants favored MPH over atomoxetine. Conclusion: “the evidence base  is limited, although it includes one well-powered study that found in favor of MPH over atomoxetine.”

·  Suicidal behavior/ideation. There were no non-comparative studies, but all five comparative studies favored MPH. That included three large cohort studies, with a combined total of over a hundred thousand participants, that favored MPH over atomoxetine. Conclusion: “the evidence base  is relatively strong, and tends to favor MPH.”

·  Bipolar disorder. A very large cohort study, with well over a quarter-million participants, favored MPH over atomoxetine. A much smaller cohort study comparing MPH with atomoxetine, with less than a tenth the number of participants, pointed toward caution. Conclusion: “the evidence base  is limited and unclear, although it includes two well-powered studies.”

·  Psychosis/psychotic-like symptoms. By far the largest study, with over 145,000 participants, compared MPH with no treatment and pointed toward caution. A cohort study with over 2,300 participants favored MPH over atomoxetine. Conclusion: “These findings indicate that more research is needed into the relationship between ADHD and psychosis, and into whether MPH moderates that risk, as well as research into individual risk factors for MPH-related psychosis in young people with ADHD.”

· Substance use disorders. A cohort study with over 20,000 participants favored MPH over anti-depressants, anti-psychotics, and no medication. Other studies looking at dosages and durations of treatment, age at treatment initiation, or comparing with no treatment or “alternative” treatment, all favored MPH except a single study with unclear results. Conclusion: “the evidence base … is relatively strong, includes one well-powered study that compared MPH with antipsychotic and antidepressant treatment, and tends to favor MPH.”

·Tics and other dyskinesias. Of four non-comparative studies, three favored MPH, the other, with the smallest sample size, urged caution. In studies comparing with dexamphetamine, pemoline, Adderall, or no active treatment, three had unclear results and two pointed towards caution. Conclusion: “more research is needed regarding the safety and management of long-term MPH in those with comorbidities or tic disorder.”

·  Seizures or EEG abnormalities. With one exception, the studies had small sample sizes. The largest, with over 2,300 participants, compared MPH with atomoxetine, with inconclusive results. Two small studies found MPH safe, one had unclear results, and two others pointed towards caution. Conclusion: “While the evidence is limited and unclear, the studies do not indicate evidence for seizures as an AE of MPH treatment in children with no prior history  more research is needed into the safety of long-term MPH in children and young people at risk of seizures.”

·  Sleep Disorders. All three non-comparative studies found MPH safe, but the largest cohort study, with over 2,300 participants, clearly favored atomoxetine. Conclusion: “more research is needed into the relationship between ADHD, sleep, and long-term MPH treatment.”

· Other notable psychiatric outcomes. Two non-comparative studies, with 118 and 289 participants, found MPH safe. A cohort study with over 700 participants compared with atomoxetine, with inconclusive results. Conclusion: “there is limited evidence regarding long-term MPH treatment and other neuropsychiatric outcomes, and that further research may be needed into the relationship between long-term MPH treatment and aggression/hostility.”

Although this landmark review points to several gaps in the evidence base, it mainly supports prior conclusions of the US Food and Drug Administration) and other regulatory agencies (based on short-term randomized controlled trials) that MPH is safe for the treatment of ADHD in children and adults. Given that MPH has been used for ADHD for over fifty years and that the FDA monitors the emergence of rare adverse events, patients, parents, and prescribers can feel confident that the medication is safe when used as prescribed.

Helga Krinzinger, Charlotte L Hall, Madeleine J Groom,Mohammed T Ansari, Tobias Banaschewski, Jan K Buitelaar, Sara Carucci, DavidCoghill, Marina Danckaerts, Ralf W Dittmann, Bruno Falissard, Peter Garas,Sarah K Inglis, Hanna Kovshoff, Puja Kochhar, Suzanne McCarthy, Peter Nagy,Antje Neubert, Samantha Roberts, Kapil Sayal, Edmund Sonuga-Barke , Ian C KWong , Jun Xia, Alexander Zuddas, Chris Hollis, Kerstin Konrad, Elizabeth BLiddle and the ADDUCE Consortium, “Neurological and psychiatric adverse effectsof long-term methylphenidate treatment in ADHD: A map of the current evidence,”Neuroscience and Biobehavioral Reviews (2019) DOI: https://doi.org/10.1016/j.neubiorev.2019.09.023.

Related posts

No items found.

How Stimulant Use in Childhood ADHD May Impact Brain Connectivity and Symptom Improvement

Previous studies have examined how stimulant medications affect the brain in controlled settings, but less is known about their impact in real-world conditions, where children may not always take their medication consistently or may combine it with other treatments. A new study leverages data from the Adolescent Brain Cognitive Development (ABCD) study to explore how real-world stimulant use impacts brain connectivity and ADHD symptoms over two years.

Changes in Brain Connectivity Researchers used brain imaging data from the ABCD study to examine the functional connectivity—communication between brain areas—of six regions within the striatum, a brain area involved in motivation and movement control. They focused on how stimulant use influenced connectivity between the striatum and other networks involved in executive functioning and visual-motor control.

The study found that stimulant exposure was linked to reduced connectivity between key striatal areas (such as the caudate and putamen) and large brain networks, including the frontoparietal and visual networks. These changes were more pronounced in children taking stimulants compared to those who were not medicated, as well as compared to typically developing children. Importantly, this reduction in connectivity seemed to regulate certain brain networks that are typically altered in children with ADHD.

Symptom Improvement In addition to brain changes, 14% of children taking stimulants experienced a significant reduction in ADHD symptoms over the two-year period. These children showed the strongest connectivity reductions between the right putamen and the visual network, suggesting that stimulant-induced connectivity changes may contribute to improvements in visual attentional control, which is a common challenge for children with ADHD.

Why This Matters This study is one of the first to examine how stimulant use in real-world conditions affects brain networks in children with ADHD over time. The findings suggest that stimulants may help normalize certain connectivity patterns associated with ADHD, particularly in networks related to attention and control. These insights could help clinicians better understand the potential long-term effects of stimulant treatment and guide personalized approaches to ADHD management.

Conclusion Stimulant medications appear to alter striatal-cortical connectivity in children with ADHD, with some changes linked to symptom improvement. This research highlights the potential for stimulant medications to impact brain networks in ways that support attention and control, highlighting the importance of understanding how real-world medication use influences ADHD treatment outcomes.

December 3, 2024

NEWS TUESDAY: Decision-making and ADHD: A Neuroeconomic Perspective

The Neuroeconomic Perspective 

Neuroeconomics combines neuroscience, psychology, and economics to understand how people make decisions. Neuroeconomic studies suggest that brain regions responsible for evaluating risk and reward, including the prefrontal cortex and dopamine pathways, function differently in individuals with ADHD. These insights are crucial for developing more tailored interventions. For example, understanding how ADHD affects reward processing might inform strategies that help individuals resist impulsive choices or increase motivation for delayed rewards.

Understanding Decision-Making in ADHD 

We know that decision-making is a sophisticated process involving various cognitive procedures. It’s not just about choosing between options but also about how to weigh risks, rewards, and potential future outcomes; Attention, motivation, and cognitive control are core to this process. For individuals with ADHD, however, this neural framework is affected by impairments in attention and impulse control, often resulting in “delay discounting”—the tendency to prefer smaller, immediate rewards over larger, delayed ones.

This propensity for impulsive decisions is more than a personal challenge; it has broader societal and economic implications. Previous studies have shown that these tendencies in ADHD can lead to issues in academics, work, finances, and personal relationships, emphasizing the need for targeted support and interventions.

Implications and Future Directions 

This review highlights a need for continued research to bridge the gaps in understanding how ADHD-specific cognitive deficits influence decision-making. Viewing ADHD through a neuroeconomic lens clarifies how cognitive and neural differences affect decision-making, often leading to impulsive choices with economic and social impacts. This perspective opens doors to more effective interventions, improving decision-making for individuals with ADHD. Future policies informed by this approach could enhance support and reduce associated societal costs.

November 26, 2024

Exploring the Link Between ADHD and Student-Teacher Relationships: A Meta-Analysis

Children with ADHD face significant challenges in academic and social settings, often including difficult interactions with teachers. This meta-analysis investigates the quality of student-teacher relationships for children with ADHD, focusing on two key dimensions: closeness and conflict. By synthesizing data from 27 studies encompassing 17,236 participants, the study aims to provide a comprehensive understanding of these dynamics and inform interventions to support both students and teachers.

Methods

A systematic review was conducted using databases such as PsycInfo, ERIC, and ProQuest. Researchers identified 47 effect sizes from 27 studies, examining the association between ADHD symptoms and the quality of student-teacher relationships. Relationship quality was assessed through two primary dimensions:

  1. Closeness – Warmth, positivity, and openness between the student and teacher.
  2. Conflict – Hostility, negativity, and tension in interactions.

Eight moderator analyses were also performed to explore how factors like grade level, gender, ADHD presentation, and comorbid conditions influenced these relationships.

Summary

The findings reveal that children with ADHD symptoms typically experience relationships with teachers characterized by lower levels of closeness and higher levels of conflict. Notably, externalizing behaviors such as hyperactivity and impulsivity are more strongly associated with conflict than inattentive symptoms. Moderator analyses showed that factors like gender, ADHD presentation, and age influence the severity of these relationship dynamics. For instance, younger children and those with hyperactive-impulsive presentations tend to have higher conflict levels with teachers.

Additionally, the research emphasizes the reciprocal nature of these relationships: ADHD symptoms may exacerbate teacher frustration, while negative teacher-student interactions can intensify student behavioral challenges.

Conclusion

This meta-analysis highlights the critical role of student-teacher relationships in the development of children with ADHD. The findings underline the need for targeted interventions that foster positive teacher-student interactions and reduce conflict. Addressing these relationship dynamics could enhance academic performance, social integration, and emotional well-being for children with ADHD. Future research should explore the causal pathways between ADHD symptoms and relationship quality to better inform educational strategies and support systems.

November 25, 2024