May 27, 2021

Can Computers Train the Brain to Cure ADHD?

It sounds like science fiction, but scientists have been testing computerized methods to train the brains of ADHD people to reduce both ADHD symptoms and cognitive deficits such as difficulties with memory or attention.  Two main approaches have been used: cognitive training and neurofeedback. Cognitive training methods ask patients to practice tasks aimed at teaching specific skills, such as retaining information in memory or inhibiting impulsive responses. Currently, results from ADHD brain studies suggest that the ADHD brain is not very different from the non-ADHD brain, but that ADHD leads to small differences in the structure, organization, and functioning of the brain. The idea behind cognitive training is that the brain can be reorganized to accomplish tasks through a structured learning process. Cognitive retraining helps people who have suffered brain damage, so it was logical to think it might help the types of brain differences seen in ADHD people. Several software packages have been created to deliver cognitive training sessions to ADHD people. You can read more about these methods here: Sonuga-Barke, E., D. Brandeis, et al. (2014). "Computer-based cognitive training for ADHD: a review of current evidence." Child Adolesc Psychiatr Clin N Am23(4): 807-824. Neurofeedback was applied to ADHD after it had been observed, in many studies, that people with ADHD have unusual brain waves as measured by the electroencephalogram (EEG). We believe that these unusual brain waves are caused by the different ways that the ADHD brain processes information. Because these differences lead to problems with memory, attention, inhibiting responses, and other areas of cognition and behavior, it was believed that normalizing the brain waves might reduce ADHD symptoms. In a neurofeedback session, patients sit with a computer that reads their brain waves via wires connected to their heads. The patient is asked to do a task on the computer that is known to produce a specific type of brain wave.  The computer gives feedback via sound or a visual on the computer screen that tells the patient how 'normal' their brainwaves are. By modifying their behavior, patients learn to change their brain waves. The method is called neurofeedback because it gives patients direct feedback about how their brains are processing information. Both cognitive training and neurofeedback have been extensively studied. If you've been reading my blogs about ADHD, you know that I play by the rules of evidence-based medicine. My view is that the only way to be sure that a treatment works is to see what researchers have published in scientific journals.  The highest level of evidence is a meta-analysis of randomized controlled clinical trials.  For my lay readers, that means that many rigorous studies have been conducted and summarized with a sophisticated mathematical method.  Although both cognitive training and neurofeedback are rational methods based on good science, meta-analyses suggest that they do not help reduce ADHD symptoms. They may be helpful for specific problems, such as problems with memory, but more work is needed to be certain if that is true. The future may bring better news about these methods if they are modified and become more effective. You can learn more about non-pharmacologic treatment for ADHD from a book I recently edited: Faraone, S. V. &Antshel, K. M. (2014). ADHD: Non-Pharmacologic Interventions. Child Adolesc Psychiatr Clin N Am 23, xiii-xiv.

Related posts

No items found.

Are there Positive Aspects to ADHD?

Are there Positive Aspects to ADHD?

What are we to make of adults who exhibit the diagnostic criteria for ADHD, but are nevertheless high-functioning and successful? A trio of British investigators has just published six case studies that explore this question.  It would have been better for them to have conducted a much larger, controlled research study but, in the absence of such data in the area, these case studies are intriguing and may help guide more informative research.


The authors recruited six successful men between the ages of 30 and 65 from a National Health Service tertiary service in London. Four were in long-term relationships, with children. All had good jobs.

In open-ended taped interviews of up to an hour in length, each was asked three questions:


1.     What do you think are the advantages and disadvantages of having ADHD?
2.     Please describe a time when you felt that your ADHD helped you to achieve something?
3.     What aspects of your ADHD would you miss if it went away?

Hyper-focus in ADHD is generally considered a deficit, inset-shifting, and task-switching. But the authors report that participants associated it with productivity. One said, “I think the energy that the ADHD brain seems to have....it’s unfocused, quite scattered, chaotic and a bit random...but give that brain something that you can tune into, and it’s your interest, then all that random stuff just goes boom... I get this incredible intense concentration and that’s great for work.”
Participants also saw advantages in divergent thinking, with one stating, “I’m an artist.... a creative type... a Bohemian.... you are most likely to be a creative person if you are a divergent thinker....and not convergent... I am very creative and that’s through and through... I’m a fine art graduate, a musician, a published poet, an entrepreneur, a performer.”


All the participants reported being seen as nonconformists. Depending on a viewpoint, that can be seen as either detrimental or advantageous.
Impulsivity is a core symptom of ADHD. Participants however related it to bravery, and more specifically adventurousness, spontaneity, and thrill-seeking. One said, “thrill-seeking is an ADHD thing... I can list in my life have done white water rafting, bungee jumping, hand-glider pilot … I have done a lot in my life and achieved a lot and experienced a lot... Furthermore, I would see a lot of that as being quite positive, and a lot of that is ADHD drive.”
Another common theme was high energy and “spirit.” One participant said, “I’ve got all this energy.... a lot of energy... whatever it's to do with... nature/nurture/spiritual stuff.”


These testimonials are useful as a check on the usual narrative of impairment. ADHD does not predestine all it afflicts to an unfulfilling life. Many, often assisted by medication, still lead exciting, successful, rewarding lives.   Yet, we must be cautious in concluding that these individuals were successful because of their ADHD.  It is possible, even likely, that they had other strengths such as high intelligence that compensated for their ADHD symptoms.  We can not know from this report if their lives had been even more fulfilling or successful in the absence of ADHD.   See, for example, my blog about highly intelligent people with ADHD:  https://www.linkedin.com/pulse/20141126141502-65669938-smart-people-can-have-adhd-too/.


While the authors concede that “generalizing the findings of this study is not easy to do,” they inexplicably “also argue that the positive aspects we found are relevant to other adults with ADHD regardless of sample size, age, gender or ethnicity.”   It is not possible to draw such a definitive conclusion without a much larger sample.
On a hopeful note, they conclude, “This is a study that reaches out to people with lived experience of ADHD: service users, patients, family members, carers, partners, to say that not all symptoms of ADHD are maleficent. Recovery, high functionality, and flourishing with ADHD are possible. Too often people with lived experience hear about ADHD deficits, functional impairments, and associations with substance misuse, criminality, or other disadvantages on almost every level of life (school, work, relationships). … This study affirms the positive human qualities, assets, and attributes in ADHD that can promote and sustain high functioning and flourishing.” I fully endorse the idea that those with ADHD can have wonderful lives, especially if they receive appropriate treatment, both medical and psychological.

April 4, 2022

Advanced Economy Outlier: Even in China’s largest cities, ADHD is seldom treated with pharmaceuticals

Advanced Economy Outlier: Even in China’s largest cities, ADHD is seldom treated with pharmaceuticals

China is the outstanding economic growth story of the early twenty-first century. According to the World Bank, China has “experienced the fastest sustained expansion by a major economy in history – and has lifted more than 800 million people out of poverty.”

That expansion has been accompanied by major investments in medical research, and medical treatment capability, especially in the major urban centers that have spearheaded the boom. Life expectancy has risen from 71 in 2000 to 77 in 2019, nearing the U.S. level of 79.

Yet when it comes to pharmaceutical treatment of ADHD, China is an outlier, as revealed by a new study exploring the data in the two main medical insurance programs for its urban population.

The Urban Employee Basic Medical Insurance(UEBMI) covers both employers and employees in public and private workplaces, while the Urban Residents Basic Medical Insurance (BMI) covers the unemployed. As of 2014, these programs cover over 97% of urban residents. The China Health Insurance Research Association (CHIRA) database is a random sampling database from the UEBMI and UBMI databases.

The study population consisted of residents of the 63 cities in the CHIRA database from 2013 through 2017. Prescription prevalence was calculated by dividing the total number of patients prescribed ADHD medications in the CH IRA database by the urban population of the included cities, which was two hundred million as of 2017.

Other studies have found the prevalence of ADHD among Chinese children and adolescents to be about 6.5%, comparable to North American and European countries. Yet, the prescription prevalence of ADHD medications was 0.036% among those aged 0–14 years in 2017 in China. In other words, only about one in every two hundred youths with ADHD were being prescribed pharmaceutical treatments.

For further context, among other economically prosperous countries in Asia, Australia, North America, and Europe, the lowest prescription prevalence of ADHD medications is 0.27% in France, which is still over seven times higher than the Chinese level.

Among Chinese urban dwellers from 15 through 64 years of age, ADHD prescription prevalence in 2017 dropped by a further order of magnitude (over tenfold) to 0.003%, and among those 65 and older, to a scant 0.001%.

The Chinese study team suggested several likely contributing factors:

  • Lack of training in ADHD treatment among clinical practitioners;
  • Government fears of addiction have led to strict control of stimulant medications;
  • Discontinuation of methylphenidate production by Chinese pharmaceutical enterprises in 2009 meant having to purchase more expensive imported ADHD medications;
  • Widespread parental belief that ADHD is just “bad behavior,” not a disease requiring medication;
  • Parental reliance on alternative treatments, such as Traditional Chinese Medicine (TCM) 

April 2, 2022

Daytime Sleepiness, Cognitive Function, and Adult ADHD

What’s the relationship between daytime sleepiness and cognitive functioning in adults with ADHD?

Sleep disorders are one of the most commonly self-reported comorbidities of adults with ADHD, affecting 50 to 70 percent of them. A team of British researchers set out to see whether this association could be further confirmed with objective sleep measures, using cognitive function tests and electroencephalography (EEG).

Measured as theta/beta ratio, EEG slowing is a widely used indicator in ADHD research. While it occurs normally in non-ADHD adults at the conclusion of a day, during the day it signals excessive sleepiness, whether from obstructive sleep apnea or neurodegenerative and neurodevelopmental disorders. Coffee reverses EEG slowing, as do ADHD stimulant medications.

Study participants were either on stable treatment with ADHD medication (stimulant or non-stimulant medication) or on no medication. Participants had to refrain from taking any stimulant medications for at least 48 hours prior to taking the tests. Persons with IQ below 80 or with recurrent depression or undergoing a depressive episode were excluded.

The team administered a cognitive function test, The Sustained Attention to Response Task (SART). Observers rated on-task sleepiness using videos from the cognitive testing sessions. They wired participants for EEG monitoring.

Observer-rated sleepiness was found to be moderately higher in the ADHD group than in controls. Although sleep quality was slightly lower in the sleepy group than in the ADHD group, and symptom severity slightly greater in the ADHD group than the sleepy group, neither difference was statistically significant, indicating extensive overlap.

Omission errors in the SART were strongly correlated with sleepiness level, and the strength of this correlation was independent of ADHD symptom severity. EEG slowing in all regions of the brain was more than 50 percent higher in the ADHD group than in the control group and was highest in the frontal cortex.

Treating the sleepy group as a third group, EEG slowing was highest for the ADHD group, followed closely by the sleepy group, and more distantly by the neurotypical group. The gaps between the ADHD and sleepy groups on the one hand, and the neurotypical group on the other, were both large and statistically significant, whereas the gap between the ADHD and sleepy groups was not. EEG slowing was both a significant predictor of ADHD and of ADHD symptom severity.

The authors concluded, “These findings indicate that the cognitive performance deficits routinely attributed to ADHD … are largely due to on-task sleepiness and not exclusively due to ADHD symptom severity. … we would like to propose a simple working hypothesis that daytime sleepiness plays a major role in cognitive functioning of adults with ADHD. … As adults with ADHD are more severely sleep deprived compared to neurotypical control subjects and are more vulnerable to sleep deprivation, in various neurocognitive tasks they should manifest larger sleepiness-related reductions in cognitive performance. … One clear testable prediction of the working hypothesis would be that carefully controlling for sleepiness, time of day, and/or individual circadian rhythms would result in a substantial reduction in the neurocognitive deficits in replications of classic ADHD studies.”

March 31, 2022