March 1, 2022

A new consensus statement updates what is known about ADHD in girls and women, and offers professional advice

Boys are three times as likely as girls to be diagnosed with ADHD, and anywhere from three to sixteen times more likely to be referred for treatment.

An international team of experts recently published a consensus statement addressing this discrepancy and offering guidance to rectify the imbalance and improve diagnosis and care for girls and women with ADHD. Here are some key conclusions.

ADHD symptoms:

-Experts caution that ADHD behaviors typically express themselves differently in boys than in girls.
-That in turn leads to gender-based biases in teachers and parents. In two studies in which teachers were shown vignettes of individuals with typical ADHD behaviors, switching from female to male names and pronouns led to higher rates of referral for support and treatment.

Comorbidity:

-A major reason for this different expression of ADHD in boys is that they have much higher rates of comorbid externalizing disorders, such as the conduct disorder and oppositional defiant disorder, leading them to break rules and get into fights in school. This no doubt contributes to lower rates of referral for girls.
-On the other hand, females are more likely to have comorbid internalizing disorders, such as emotional problems, anxiety, and depression. These may be interpreted as primary conditions, and the link to ADHD is missed altogether.
-Because ADHD has come to be associated with many externalizing disorders, it is then easy to fail to identify it when it is associated with internalizing disorders such as eating disorders.
-Untreated ADHD in girls can increase the risk of substance use disorders.

Associated vulnerabilities:

Children with ADHD are more likely to be unpopular with their peers and to experience rejection. Whereas boys are more likely to experience that rejection in physical ways, girls are more likely to experience it in social ways and through cyberbullying. That, in turn, contributes to lower self-esteem, which could explain some comorbid internalizing disorders.

Symptoms of hyperactivity/impulsivity, one of the two key components of ADHD, are associated with higher rates of risk-taking behavior:

- Like males with ADHD, females with ADHD have higher injury rates.
-Both males and females with ADHD are more likely to underachieve in school or drop out altogether.
-Overall, adolescents with ADHD become sexually active earlier, have more sexual partners, and are more frequently treated for sexually transmitted diseases than their normally developing peers. That also leads to higher rates of teenage and unplanned pregnancies.
-As with males with ADHD, females with ADHD have higher rates of criminal behavior than normally developing peers. While females with ADHD are still half as likely to be convicted of a crime than males with ADHD, one study showed they nevertheless are eighteen times more likely to be convicted of a crime than normally developing females.

Compensatory or coping behaviors:

- Girls may turn to drink alcohol, smoking cannabis, smoking cigarettes, or vaping nicotine to cope with emotional anguish, social isolation, and rejection.
-Some girls may seek to build social support through high-risk activities such as joining a gang, becoming promiscuous, and engaging in criminal behavior.

Triggers for possible referral

Ages 5-11:

-Bedwetting, nail-biting

Ages 5-16:

-Early sexualized behavior

Ages 5-18:

-Suspensions, expulsions, frequent detentions
-Poor attendance/truancy
-Consistent lateness, poor organization
-Academic difficulties, low academic self-esteem
-Conduct problems, conflicts with parents and peers
-Bullying (usually as victims)
-Regular tobacco and alcohol use
- Obesity and other eating disorders
- Repeated injuries
- Sleep difficulties
- Executive function difficulties
- Extreme emotional meltdowns

Ages 12 and above:

- Relationship problems, anxiety about relationships
- Social rejection, isolation
- Substance abuse, including alcohol
- Risky sexual behavior
- Underage or unwanted pregnancy
- Delinquency or criminal behavior (including shoplifting, vandalism)
- Low self-esteem
- Self-harm, suicidality

Ages 16 and above:

- Dropping out of school
- Losing jobs
- Parenting problems
- Criminality
- Financial difficulties
- Traffic crashes
- Internalizing conditions: depression, anxiety

Ages 18 and above:

- Gambling problems, compulsive shopping
- Personality disorder
- Chronic fatigue syndrome
- Fibromyalgia

The key message is not to disregard females because they do not present with the externalizing behavioral problems, or the disruptive, hard-to-manage boisterous, or loud behaviors typically associated with males with ADHD.

Diagnosis

The authors emphasize that "comprehensive assessment should be completed to accurately capture the symptoms of ADHD across multiple settings, their persistence over time, and associated functional impairments. High rates of comorbidity are typically present. The assessment process is typically tripartite, involving the use of rating scales, a clinical interview, and ideally objective information from informants or school reports."

Rating scales: Ideally rely on those that provide female norms, making them more sensitive to female presentation.

Clinical interviews:

-Be mindful of age-appropriate, common-occurring conditions in females with ADHD, including autistic spectrum disorder, tics, mood disorders, anxiety, eating disorders, fibromyalgia, and chronic fatigue syndrome.
- Be alert to signs of self-harming behaviors(especially cutting), which peak in adolescence and early adulthood.
-Given that heritability of ADHD is high, ranging between 70-80% in both children and adults, be mindful that informants who are family members may also have ADHD (possibly undiagnosed) which may affect their judgment of "typical" behavior. The assessor should obtain specific examples of behavior from the informant and use these to make clinically informed judgments, rather than relying upon the informants' perception of what is typical or atypical.

Treatment

Pharmacological:

- Recommendations for medication do not differ by sex, except that pharmacological treatment is generally not advised during pregnancy or breastfeeding.
- A systematic review and network meta-analysis recommended methylphenidate for children and adolescents and amphetamines for adults, taking into account both efficacy and safety. Larger confidence intervals about the tolerability and efficacy of bupropion, clonidine, and guanine were reported, indicating less conclusive results about the efficacy and tolerability of these oral medications. The use of medication should be followed up over time to verify if medications are effective and well-tolerated, and to manage the effects of related conditions(e.g. anxiety, depression) if they emerge.

Non-pharmacological:

- Cognitive behavioral therapy (CBT) together with psychoeducation (which can be provided to both patients and parent/guardians together or independently) are the best forms of psychological treatment.
- Parents and other guardians of teenage girls need to be shown how to identify deliberate self-harming or risky behavior.
- Adolescent girls may require assistance in addressing risky behavior (sexual risk, substance misuse) and improving self-management. Girls with ADHD are more vulnerable to sexual exploitation and have higher rates of early and unwanted pregnancy.
- Adults are more likely to require interventions to address employment problems, child-rearing, and parenting. Women with ADHD are also more vulnerable to sexual exploitation, including physical and sexual violence.
- Interventions should support attendance and engagement with education to avoid early school-leaving, diminished educational attainment, and associated vulnerabilities. While externalizing conditions have a greater impact on classroom behavior, internalizing conditions affect motivation and thus the ability to benefit from education.

Institutional outreach

- Educational, social care, occupational, and criminal justice system professionals should be trained to improve the detection and referral of ADHD in girls and women.
- Flexible learning systems and support with childcare can help women with ADHD return to education after having a baby.
- Depending on the country of residence, women who disclose their disability to their employer may be entitled to reasonable adjustments to the workplace to accommodate their condition.
- Low to no-cost apps are available to assist persons with ADHD with itineraries, lists, and reminders.
- Career planning should take into account that some occupations may provide a better fit for women with ADHD: "some individuals with ADHD show a preference for more stimulating environments, active, hands-on, or busy and fast-paced jobs."
- Persons with ADHD, both male and female, make up roughly a quarter of the prison population: "Evidence indicates that ADHD treatment is associated with reduced rates of criminality, is tolerated and effective in prison inmates, and improves their quality of life and cognitive function. This has led to speculation that effective identification and treatment of ADHD may help to reduce re-offending."

The authors concluded, "To facilitate identification, it is important to move away from the previously predominating disruptive boy stereotype of ADHD and understand the more subtle and internalized presentation that predominates in girls and women."

Susan Young, Nicoletta Adamo, BryndísBjörkÁsgeirsdóttir, Polly Branney, Michelle Beckett, William Colley, Sally Cubbin, Quinton Deeley, Emad Farrag, Gisli Gudjonsson, Peter Hill, JackHollingdale, OzgeKilic, Tony Lloyd, Peter Mason, Eleni Paliokosta, Sri Perecherla, Jane Sedgwick, Caroline Skirrow, Kevin Tierney, Kobus van Rensburg, EmmaWoodhouse, “Females with ADHD: An expert consensus statement taking a lifespan approach guiding the identification and treatment of attention-deficit/ hyperactivity disorder in girls and women,” BMC Psychiatry(2020)20:404,https://doi.org/10.1186/s12888-020-02707-9.

Related posts

No items found.

Taiwan Nationwide Population Study Concludes Dopaminergic ADHD Medications Reduce Risk of Myopia

The Background:

Myopia is a growing global health concern linked to conditions like macular degeneration, glaucoma, and retinal detachment. Its prevalence has surged in recent decades; by 2050, an estimated 5 billion people will have myopia. The increase is especially marked in Asia – a survey in Taiwan reports that 84% of students aged 15 to 18 are myopic, with 24% severely affected. 

Dopamine is an important neurotransmitter in the retina, involved in eye development, visual signaling, and refractive changes. The dopamine hypothesis, suggesting that retinal dopamine release helps prevent myopia, has emerged as a leading theory of myopia control. 

Most studies show ADHD is highly heritable, often involving dopamine system genes. ADHD is strongly associated with dopaminergic abnormalities, especially in dopamine transporter function and release dynamics. 

Medications for ADHD, like methylphenidate, atomoxetine, and clonidine, help regulate dopamine to reduce symptoms.  

The Study:

Given dopamine’s critical involvement in both ADHD and myopia, a Taiwanese research team hypothesized that medications for ADHD that influence dopaminergic pathways may have a significant effect on myopia risk.  

To evaluate this hypothesis, the team conducted a nationwide cohort study using data from Taiwan’s National Health Insurance (NHI) program, which covers 99% of the nation’s 23 million residents and provides access to comprehensive eye care and screenings. Taiwan requires visual acuity screenings beginning at age four, with annual examinations for school-aged children to promote the early detection of visual anomalies such as myopia.  

Furthermore, ADHD medication and diagnosis are tracked through compulsory diagnostic codes. This permits an accurate assessment of the effects of dopaminergic medications on myopia risk. 

Propensity score allocation using a multivariable logistic regression model was applied to reduce bias from confounding influences, pairing cohorts based on similar scores. 

The Results: 

Comparing 133,945 individuals with ADHD with an equal number without ADHD, untreated ADHD was associated with a 22% greater risk of myopia.  

However, after adjusting for covariates (gender, age, insured premium, comorbidities, location, and urbanization level), the ADHD cohort receiving medication treatment showed a 39% decreased risk of myopia relative to the untreated ADHD cohort. 

Narrowing this further to the ADHD cohort receiving dopaminergic medications reduced the risk of myopia by more than half (52%) relative to the untreated ADHD cohort.  

Treatment with two dopaminergic medications reduced the risk by well over two-thirds (72%) relative to the untreated ADHD cohort. 

There were no significant differences between methylphenidate, atomoxetine, and clonidine. Each reduced risk by about 50%. 

The team did not directly compare the ADHD cohort receiving dopaminergic medications with the non-ADHD cohort. But if there were 122 cases of myopia in the ADHD cohort for every 100 cases in the non-ADHD cohort, and dopaminergic medications halved the cases in the ADHD cohort to about 60, that would represent a roughly 40% reduction in myopia risk relative to the non-ADHD cohort. 

The team concluded, “our research indicates that pharmacologically treated ADHD children have a reduced risk of myopia. Conversely, untreated ADHD children are at a heightened risk relative to those without ADHD. Moreover, the cumulative effects of ADHD medications were found to notably decrease myopia incidence, emphasizing the protective influence of dopaminergic modulation in these interventions.” 

The Take-Away:

Children with untreated ADHD are more likely to develop myopia, but those receiving dopaminergic medications had a substantially lower risk. The findings suggest that ADHD medications may help protect against myopia by boosting dopamine signaling. More research is needed before firmly drawing this conclusion, but this research could open the door to new approaches for preventing myopia in at-risk children.

December 8, 2025

Two New Meta-analyses Point to Benefits of Transcranial Direct Current Stimulation

Background: 

ADHD treatment includes medication, behavioral therapy, dietary changes, and special education. Stimulants are usually the first choice but may cause side effects like appetite loss and stomach discomfort, leading some to stop using them. Cognitive behavioral therapy (CBT) is effective but not always sufficient on its own. Research is increasingly exploring non-drug options, such as transcranial direct current stimulation (tDCS), which may boost medication effectiveness and improve results. 

What is tDCS?

tDCS delivers a weak electric current (1.0–2.0 mA) via scalp electrodes to modulate brain activity, with current flowing from anode to cathode. Anodal stimulation increases neuronal activity, while cathodal stimulation generally inhibits it, though effects vary by region and neural circuitry. The impact of tDCS depends on factors such as current intensity, duration, and electrode shape. It targets cortical areas, often stimulating the dorsolateral prefrontal cortex for ADHD due to its role in cognitive control. Stimulation of the inferior frontal gyrus has also been shown to improve response inhibition, making it another target for ADHD therapy. 

There is an ongoing debate about how effective tDCS is for individuals with ADHD. One study found that applying tDCS to the left dorsolateral prefrontal cortex can help reduce impulsivity symptoms in ADHD, whereas another study reported that several sessions of anodic tDCS did not lead to improvements in ADHD symptoms or cognitive abilities.  

New Research:

Two recent meta-analyses have searched for a resolution to these conflicting findings. Both included only randomized controlled trials (RCTs) using either sham stimulation or a waitlist for controls. 

Each team included seven studies in their respective meta-analyses, three of which appeared in both. 

Both Wang et al. (three RCTs totaling 97 participants) and Wen et al. (three RCTs combining 121 participants) reported very large effect size reductions in inattention symptoms from tDCS versus controls. There was only one RCT overlap between them. Wang et al. had moderate to high  variation (heterogeneity) in individual study outcomes, whereas Wen et al. had virtually none. There was no indication of publication bias. 

Whereas Wen et al.’s same three RCTs found no significant reduction in hyperactivity/impulsivity symptoms, Wang et al. combined five RCTs with 221 total participants and reported a medium effect size reduction in impulsivity symptoms. This time, there was an overlap of two RCTs between the studies. Wen et al. had no heterogeneity, while Wang et al. had moderate heterogeneity. Neither showed signs of publication bias.  

Turning to performance-based tasks, Wang et al. reported a medium effect size improvement in attentional performance from tDCS over controls (three RCTs totaling 136 participants), but no improvement in inhibitory control (five RCTs combining 234 persons). 

Wang et al. found no significant difference in adverse events (four RCTs combining 161 participants) between tDCS and controls, with no heterogeneity. Wen et al. found no significant difference in dropout rates (4 RCTs totaling 143 individuals), again with no heterogeneity.  

Wang et al. concluded, “tDCS may improve impulsive symptoms and inattentive symptoms among ADHD patients without increasing adverse effects, which is critical for clinical practice, especially when considering noninvasive brain stimulation, where patient safety is a key concern.” 

Wen et al. further concluded, “Our study supported the use of tDCS for improving the self-reported symptoms of inattention and objective attentional performance in adults diagnosed with ADHD. However, the limited number of available trials hindered a robust investigation into the parameters required for establishing a standard protocol, such as the optimal location of electrode placement and treatment frequency in this setting. Further large-scale double-blind sham-controlled clinical trials that include assessments of self-reported symptoms and performance-based tasks both immediately after interventions and during follow-up periods, as well as comparisons of the efficacy of tDCS targeting different brain locations, are warranted to address these issues.” 

The Take-Away: 

Previous studies have shown mixed results on the benefits of this therapy on ADHD. These new findings suggest that tDCS may hold some real promise for adults with ADHD. While the technique didn’t meaningfully shift hyperactivity or impulsivity, it was well-tolerated and showed benefit, especially in self-reported symptoms. However, with only a handful of trials to draw from, it would be a mistake to suggest tDCS as a standard treatment protocol. Larger, well-designed studies are the next essential step to clarify where, how, and how often tDCS works best.

Meta-analysis Reports Executive Function Gains from Exercise Interventions for ADHD

Background:

The development of ADHD is strongly associated with functional impairments in the prefrontal cortex, particularly the dorsolateral prefrontal cortex, which plays a key role in maintaining attention and controlling impulses. Moreover, imbalances in neurotransmitters like dopamine and norepinephrine are widely regarded as major neurobiological factors contributing to ADHD. 

Executive functions are a group of higher-order cognitive skills that guide thoughts and actions toward goals. “Executive function” refers to three main components: inhibitory control, working memory, and cognitive flexibility. Inhibitory control helps curb impulsive actions to stay on track. Working memory allows temporary storage and manipulation of information for complex tasks. Cognitive flexibility enables switching attention and strategies in varied or demanding situations. 

Research shows that about 89% of children with ADHD have specific executive function impairments. These difficulties in attention, self-control, and working memory often result in academic and social issues. Without timely intervention, these issues can lead to emotional disorders like depression, anxiety, and irritability, further affecting both physical health and social development. 

Currently, primary treatments for executive function deficits in school-aged children with ADHD include medication and behavioral or psychological therapies, such as Cognitive Behavioral Therapy (CBT). While stimulant medications do improve executive function, not all patients are able to tolerate these medications. Behavioral interventions like neurofeedback provide customized care but show variable effectiveness and require specialized resources, making them hard to sustain. Safer, more practical, and long-lasting treatment options are urgently needed. 

Exercise interventions are increasingly recognized as a safe, effective way to improve executive function in children with ADHD. However, systematic studies on school-aged children remain limited.  

Moreover, there are two main scoring methods for assessing executive function: positive scoring (higher values mean better performance, such as accuracy) and reverse scoring (lower values mean better performance, such as reaction time). These different methods can affect how results are interpreted and compared across studies. This meta-analysis explored how different measurement and scoring methods might influence results, addressing important gaps in the research. 

The Study:

Only randomized controlled trials (RCTs) involving school-aged children (6–13 years old) diagnosed with ADHD by DSM-IV, DSM-5, ICD-10, ICD-11, or the SNAP-IV scale were included. Studies were excluded if the experimental group received non-exercise interventions or exercise combined with other interventions. 

Cognitive Flexibility 

Using positive scoring, exercise interventions were associated with a narrowly non-significant small effect size improvement relative to controls (eight RCTs, 268 children). Using reverse scoring, however, they were associated with a medium effect size improvement (eleven RCTs, 452 children). Variation (heterogeneity) in individual RCT outcomes was moderate, with no sign of publication bias in both instances. 

Inhibitory Control 

Using positive scoring, exercise interventions were associated with a medium effect size improvement relative to controls (ten RCTs, 421 children). Using reverse scoring, there was an association with a medium effect size improvement (eight RCTs, 265 children). Heterogeneity was moderate with no sign of publication bias in either case. 

Working Memory 

Using positive scoring, exercise interventions were associated with a medium effect size improvement relative to controls (six RCTs, 321 children). Using reverse scoring, the exercise was associated with a medium effect size improvement (five RCTs, 143 children). Heterogeneity was low with no indication of publication bias in both instances. 

Conclusion:

The team concluded, “Exercise interventions can effectively improve inhibitory control and working memory in school-aged children with ADHD, regardless of whether positive or reverse scoring methods are applied. However, the effects of exercise on cognitive flexibility appear to be limited, with significant improvements observed only under reverse scoring. Moreover, the effects of exercise interventions on inhibitory control, working memory, and cognitive flexibility vary across different measurement paradigms and scoring methods, indicating the importance of considering these methodological differences when interpreting results.” 

Although this work is intriguing, it does not show that exercise significantly improves the symptoms of ADHD in children. This means that exercise, although beneficial for many reasons, should not be viewed as a replacement for evidence-based treatments for the disorder.

December 3, 2025