November 29, 2021

Associations between diet and ADHD emerge from Swedish population-based twin study

Sweden has a national single-payer health insurance system that includes virtually the entire population. It also has a system of national registers that track every resident from birth to death. That makes it possible to conduct nationwide population studies with a very high degree of precision and reliability.

In addition, one of the national registers is the Swedish Twin Register. Tracking all twins in the population enables studies to evaluate the degree to which observed associations may be attributable to genetic influences and to familial confounding. The twin method relies on the different levels of genetic relatedness between monozygotic ("identical") twins, who are genetically identical, and dizygotic ("fraternal") twins, who share on average half of their genetic variation (as do ordinary full siblings).

A Swedish team of researchers identified 42,582 Swedish twins born between 1959 and 1985, and who were, therefore, adults by the time of the study (20-47 years old). Of these, 24,872 (three out of five) completed a web-based survey with 1,300 questions covering lifestyle and mental and physical health. Out of this group, 17,999 provided information on ADHD symptoms and food frequency.

Self-reported ADHD symptoms came from nine inattention components and nine hyperactivity/impulsivity components, covering the 18 DSM- IV symptoms of ADHD.

The food frequency questionnaire included 94 food items, with the following frequency categories: never, 1-3 times/month, 1-2 times/week, 3-4 times/week, 5-6 times/week, 1 time/day, 2 times/day, 3 times/day.

In the raw data, the two subtypes of ADHD exhibited very similar associations. Both had significant associations with unhealthy diets. Both were more likely to be eating foods high in added sugar, and neglecting fruits and vegetables while eating more meat and fats.

After adjusting for the degree of relatedness of twins (whether monozygotic or dizygotic) and controlling for the other ADHD subtype, the associations remained statistically significant for inattention, but diminished to negligible levels or became statistically non-significant for hyperactivity/impulsivity.

Even for persons with inattention symptoms, adjusted correlations were small (never exceeding r = 0.10), with the strongest associations being for overall unhealthy eating habits (r = 0.09), eating foods high in added sugar (r = 0.10) or high in fat (r = 0.05), and neglecting fruits and vegetables (r = 0.06). All other associations became statistically non-significant.

For persons with hyperactivity/impulsivity symptoms, the only associations that remained statistically significant ­- but at tiny effect sizes - were unhealthy dietary patterns (r = 0.04) and consumption of foods high in added sugar (r = 0.03).

The further genetic analysis, therefore, focused on the strongest associations, between ADHD subtypes on the one hand, and unhealthy dietary patterns and eating foods high in added sugar on the other hand. The heritability estimates (the fraction of phenotypic covariance explained by genetic influences) were 44%, 40%, and 37% for inattention and high-sugar food, inattention and unhealthy dietary patterns, and hyperactivity/impulsivity and high-sugar food, respectively.

 When examining only differences between pairs of monozygotic("identical") twins, the correlations became stronger for inattention, rising to r = 0.12 for unhealthy eating habits and r = 0.13 for consumption of foods high in added sugar. For hyperactivity/impulsivity symptoms, the association with unhealthy eating habits was weaker, and the association with consumption of foods high in added sugar became statistically insignificant.

The authors concluded, "we identified positive associations between self-reported trait dimensions of ADHD and intake of seafood, high-fat food, high-sugar food, high-protein food, and an unhealthy dietary pattern, and negative associations with consumption of fruits, vegetables, and a healthy dietary pattern. However, all the associations are small in magnitude. These associations were stronger for inattention compared to hyperactivity/ impulsivity. This pattern of associations was also reflected at the etiological level, where we found a slightly stronger genetic correlation between inattention with dietary habits and hyperactivity/impulsivity with dietary habits. Non-shared environmental influences also contributed to the overlap between ADHD symptom dimensions and consumption of high-sugar food and unhealthy dietary pattern. However, shared environmental influences probably contributed relatively little to the associations between ADHD symptoms and dietary habits. ... significant MZ twin intraplate differences also provided support for a potential causal link between inattention and dietary habits.

Lin Li, Mark J. Taylor, Katarina Bälter, Ralf Kuja-Halkola, Qi Chen, Tor-Arne Hegvik, Ashley E. Tate, Zheng Chang, Alejandro Arias-Vásquez, Catharina A. Hartman, Henrik Larsson, "Attentiondeficit/hyperactivity disorder symptoms and dietary habits in adulthood: A large populationbased twin study in Sweden," American Journal of Medical Genetics (2020) Vol.183, Issue 8, 475-485,

Related posts

No items found.

News Tuesday: Fidgeting and ADHD

A recent study delved into the connection between fidgeting and cognitive performance in adults with Attention-Deficit/Hyperactivity Disorder. Recognizing that hyperactivity often manifests as fidgeting, the researchers sought to understand its role in attention and performance during cognitively demanding tasks. They designed a framework to quantify meaningful fidgeting variables using actigraphy devices.

(Note: Actigraphy is a non-invasive method of monitoring human rest/activity cycles. It involves the use of a small, wearable device called an actigraph or actimetry sensor, typically worn on the wrist, similar to a watch. The actigraph records movement data over extended periods, often days to weeks, to track sleep patterns, activity levels, and circadian rhythms. In this study, actigraphy devices were used to measure fidgeting by recording the participants' movements continuously during the cognitive task. This data provided objective, quantitative measures of fidgeting, allowing the researchers to analyze its relationship with attention and task performance.)

The study involved 70 adult participants aged 18-50, all diagnosed with ADHD. Participants underwent a thorough screening process, including clinical interviews and ADHD symptom ratings. The analysis revealed that fidgeting increased during correct trials, particularly in participants with consistent reaction times, suggesting that fidgeting helps sustain attention. Interestingly, fidgeting patterns varied between early and later trials, further highlighting its role in maintaining focus over time.

Additionally, a correlation analysis validated the relevance of the newly defined fidget variables with ADHD symptom severity. This finding suggests that fidgeting may act as a compensatory mechanism for individuals with ADHD, aiding in their ability to maintain attention during tasks requiring cognitive control.

This study provides valuable insights into the role of fidgeting in adults with ADHD, suggesting that it may help sustain attention during challenging cognitive tasks. By introducing and validating new fidget variables, the researchers hope to standardize future quantitative research in this area. Understanding the compensatory role of fidgeting can lead to better management strategies for ADHD, emphasizing the potential benefits of movement for maintaining focus.

July 16, 2024

Identifying Autistic-Like Symptoms in Children with ADHD

NEWS TUESDAY: Identifying Autistic-Like Symptoms in Children with ADHD

A recent study investigated the presence of autistic-like symptoms in children diagnosed with Attention Deficit/Hyperactivity Disorder (ADHD). Given the overlapping social difficulties in both ADHD and Autism Spectrum Disorder (ASD), distinguishing between the two disorders can be challenging. This study aims to pinpoint specific patterns of autistic symptoms in children with ADHD, comparing them to those with ASD using the Autism Diagnostic Observation Schedule, 2nd edition (ADOS-2).

The research involved 43 school-age children divided into two groups:

  • ADHD Group (25 children): Initially referred for ASD symptoms but later diagnosed with ADHD.
  • ASD Group (18 children): Children diagnosed with ASD.

Researchers used ADOS-2 to evaluate differences in communication deficits, social interaction challenges, and repetitive behaviors between the two groups. The study also compared IQ, age, ADOS-2 domain scores, and externalizing/internalizing problems.

Key Findings:

  • Significant differences were found between the ADHD and ASD groups in ADOS-2 domain scores, including Social Affect, Restricted and Repetitive Behavior, and Total Score.
  • On an individual item level, children with ADHD displayed similar atypical behaviors as those with ASD in social-communication areas such as "Pointing" and "Gestures".
  • Both groups showed comparable frequencies in behaviors like "Stereotyped/idiosyncratic words or phrases", "Mannerisms", and "Repetitive interests and behaviors".

The study highlights the importance of identifying transdiagnostic domains that overlap between ADHD and ASD. The transdiagnostic domain refers to a set of symptoms or behaviors that are common across multiple diagnostic categories rather than being specific to just one. Identifying these domains in mental health practice and in psychological research is crucial to understanding, properly diagnosing, and treating conditions with overlapping features. This understanding could pave the way for tailored treatments addressing the specific needs of children with ADHD, particularly those exhibiting autistic-like symptoms.

July 9, 2024

Non-stimulant Medications for Adults with ADHD: An Overview

NEW STUDY: Non-stimulant Medications for Adults with ADHD: An Overview

Attention-Deficit/Hyperactivity Disorder (ADHD) in adults is commonly treated with stimulant medications such as methylphenidate and amphetamines. However, not all patients respond well to these stimulants or tolerate them effectively. For such cases, non-stimulant medications provide an alternative treatment approach.

Recent research by Brancati et al. reviews the efficacy and safety of non-stimulant medications for adult ADHD. Atomoxetine, a well-studied non-stimulant, has shown significant effectiveness in treating ADHD symptoms in adults. The review highlights the importance of considering dosage, treatment duration, safety, and the presence of psychiatric comorbidities when prescribing atomoxetine.

Additionally, certain antidepressants, including tricyclic compounds, bupropion, and viloxazine, which possess noradrenergic or dopaminergic properties, have demonstrated efficacy in managing adult ADHD. Antihypertensive medications, especially guanfacine, have also been found effective. Other medications like memantine, metadoxine, and mood stabilizers show promise, whereas treatments like galantamine, antipsychotics, and cannabinoids have not yielded positive results.

The expert opinion section of the review emphasizes that while clinical guidelines primarily recommend atomoxetine as a second-line treatment, several other non-stimulant options can be utilized to tailor treatments based on individual patient needs and comorbid conditions. Despite these advancements, the authors call for further research to develop and refine more personalized treatment strategies for adults with ADHD.

This review underscores the growing landscape of non-stimulant treatment options, offering hope for more personalized and effective management of ADHD in adults.

June 25, 2024