October 16, 2021

Swedish nationwide population study explores links between ADHD and physical ailments

What are the links between ADHD and physical ailments in adults? And, where such links exist, how can we tease out where they are due to genetics, shared environment, or unshared environmental influences?

An international research team used the Swedish population and health registers to explore these links in an entire national population. They were able to do this because Sweden has a single-payer national health insurance system, cross-referenced with the population and other national registries through personal identification numbers.

This study identified full-sibling and maternal half-sibling pairs born from 1932 through 1995, through the Population and Multi-Generation Registers. This yielded a total of 4,789,799 individuals - consisting of 3,819,207 full-sibling pairs and 469,244 maternal half-sibling pairs, and 1,841,303family clusters (siblings, parents, cousins, spouses). Roughly half were men, the other half women.

After adjusting for sex and birth year, those with ADHD were at significantly higher risk of a wide range of physical ailments, when compared with individuals without ADHD:

·        Over four times as likely to have sleep disorders or develop alcohol-related liver disease;
·        Roughly three times as likely to develop the chronic obstructive pulmonary disease, epilepsy, and fatty liver disease;

·        Over two and a half times more likely to become obese.

Overall, ADHD was significantly associated with 34 of the 35 physical diseases studied, rheumatoid arthritis being the only exception.

Comparing men with women, women with ADHD were at significantly greater risk of atrial fibrillation, urolithiasis, sleep disorders, and asthma than men with ADHD. Conversely, men with ADHD faced a greater risk of thyroid disorder than women with ADHD.

Between-sibling analyses showed that full siblings of individuals with ADHD were at significantly increased risk for 27 of the 35 physical ailments, suggesting that shared familial factors contributed to the co-occurrence of the conditions. This remained true even after adjusting for the occurrence of ADHD in full siblings.

These associations were generally reduced in maternal half-siblings of individuals with ADHD. The associations between full-siblings were significantly stronger than between maternal half-siblings for type 1 diabetes, obesity, kidney infections, back or spine pain, migraine, sleep disorders, asthma, and chronic obstructive pulmonary disease.

Keep in mind that full-siblings on average share half of their genes, whereas maternal half-siblings share only a quarter of their genes. Maternal (as opposed to paternal) half-siblings were chosen as a basis for comparison because they are typically brought up together in the same family setting, and thus are similar to full-siblings in having a shared family environment. Reduced risk in maternal half-siblings would therefore signal a genetic component to the risk.

Given that ADHD is itself a nervous system disorder, it is unsurprising that it correlated most strongly with other nervous system disorders, with a medium effect size (r=.23). Genetic factors explained over a quarter of the correlation, shared environmental factors over a seventh, and non-shared environmental factors the other three-fifths. The latter could point to environmental risk factors that influence both ADHD and nervous system diseases.

Small-to-medium correlations were found with metabolic, respiratory, and musculoskeletal disease groups, with genetic factors explaining roughly two-thirds of the correlation, and non-shared environmental factors most of the rest.

The authors concluded that "adults with ADHD are at increased risk of a range of physical conditions, across circulatory, metabolic, gastrointestinal, genitourinary, musculoskeletal, nervous system, respiratory, and skin diseases. Most physical conditions showed familial associations with ADHD (mainly from genetic factors). Our findings highlight the need for rigorous medical assessment and care in adult patients with ADHD, and suggest long-term consequences of age-related diseases."

Ebba Du Rietz, Isabell Brickell, AgnieszkaButwicka, Marica Leone, Zheng Chang, Samuele Cortese, Brian M D'Onofrio, Catharina A Hartman, Paul Lichtenstein, Stephen V Faraone, Ralf Kuja-Halkola, Henrik Larsson, "Mapping phenotypic and aetiological associations between ADHD and physical conditions in adulthood in Sweden: a genetically informed register study," Lancet Psychiatry (2021), vol. 8, issue 9, 774-783, published online, https://doi.org/10.1016/S2215-0366(21)00171-1.

Related posts

No items found.

How Stimulant Use in Childhood ADHD May Impact Brain Connectivity and Symptom Improvement

Previous studies have examined how stimulant medications affect the brain in controlled settings, but less is known about their impact in real-world conditions, where children may not always take their medication consistently or may combine it with other treatments. A new study leverages data from the Adolescent Brain Cognitive Development (ABCD) study to explore how real-world stimulant use impacts brain connectivity and ADHD symptoms over two years.

Changes in Brain Connectivity Researchers used brain imaging data from the ABCD study to examine the functional connectivity—communication between brain areas—of six regions within the striatum, a brain area involved in motivation and movement control. They focused on how stimulant use influenced connectivity between the striatum and other networks involved in executive functioning and visual-motor control.

The study found that stimulant exposure was linked to reduced connectivity between key striatal areas (such as the caudate and putamen) and large brain networks, including the frontoparietal and visual networks. These changes were more pronounced in children taking stimulants compared to those who were not medicated, as well as compared to typically developing children. Importantly, this reduction in connectivity seemed to regulate certain brain networks that are typically altered in children with ADHD.

Symptom Improvement In addition to brain changes, 14% of children taking stimulants experienced a significant reduction in ADHD symptoms over the two-year period. These children showed the strongest connectivity reductions between the right putamen and the visual network, suggesting that stimulant-induced connectivity changes may contribute to improvements in visual attentional control, which is a common challenge for children with ADHD.

Why This Matters This study is one of the first to examine how stimulant use in real-world conditions affects brain networks in children with ADHD over time. The findings suggest that stimulants may help normalize certain connectivity patterns associated with ADHD, particularly in networks related to attention and control. These insights could help clinicians better understand the potential long-term effects of stimulant treatment and guide personalized approaches to ADHD management.

Conclusion Stimulant medications appear to alter striatal-cortical connectivity in children with ADHD, with some changes linked to symptom improvement. This research highlights the potential for stimulant medications to impact brain networks in ways that support attention and control, highlighting the importance of understanding how real-world medication use influences ADHD treatment outcomes.

December 3, 2024

NEWS TUESDAY: Decision-making and ADHD: A Neuroeconomic Perspective

The Neuroeconomic Perspective 

Neuroeconomics combines neuroscience, psychology, and economics to understand how people make decisions. Neuroeconomic studies suggest that brain regions responsible for evaluating risk and reward, including the prefrontal cortex and dopamine pathways, function differently in individuals with ADHD. These insights are crucial for developing more tailored interventions. For example, understanding how ADHD affects reward processing might inform strategies that help individuals resist impulsive choices or increase motivation for delayed rewards.

Understanding Decision-Making in ADHD 

We know that decision-making is a sophisticated process involving various cognitive procedures. It’s not just about choosing between options but also about how to weigh risks, rewards, and potential future outcomes; Attention, motivation, and cognitive control are core to this process. For individuals with ADHD, however, this neural framework is affected by impairments in attention and impulse control, often resulting in “delay discounting”—the tendency to prefer smaller, immediate rewards over larger, delayed ones.

This propensity for impulsive decisions is more than a personal challenge; it has broader societal and economic implications. Previous studies have shown that these tendencies in ADHD can lead to issues in academics, work, finances, and personal relationships, emphasizing the need for targeted support and interventions.

Implications and Future Directions 

This review highlights a need for continued research to bridge the gaps in understanding how ADHD-specific cognitive deficits influence decision-making. Viewing ADHD through a neuroeconomic lens clarifies how cognitive and neural differences affect decision-making, often leading to impulsive choices with economic and social impacts. This perspective opens doors to more effective interventions, improving decision-making for individuals with ADHD. Future policies informed by this approach could enhance support and reduce associated societal costs.

November 26, 2024

Exploring the Link Between ADHD and Student-Teacher Relationships: A Meta-Analysis

Children with ADHD face significant challenges in academic and social settings, often including difficult interactions with teachers. This meta-analysis investigates the quality of student-teacher relationships for children with ADHD, focusing on two key dimensions: closeness and conflict. By synthesizing data from 27 studies encompassing 17,236 participants, the study aims to provide a comprehensive understanding of these dynamics and inform interventions to support both students and teachers.

Methods

A systematic review was conducted using databases such as PsycInfo, ERIC, and ProQuest. Researchers identified 47 effect sizes from 27 studies, examining the association between ADHD symptoms and the quality of student-teacher relationships. Relationship quality was assessed through two primary dimensions:

  1. Closeness – Warmth, positivity, and openness between the student and teacher.
  2. Conflict – Hostility, negativity, and tension in interactions.

Eight moderator analyses were also performed to explore how factors like grade level, gender, ADHD presentation, and comorbid conditions influenced these relationships.

Summary

The findings reveal that children with ADHD symptoms typically experience relationships with teachers characterized by lower levels of closeness and higher levels of conflict. Notably, externalizing behaviors such as hyperactivity and impulsivity are more strongly associated with conflict than inattentive symptoms. Moderator analyses showed that factors like gender, ADHD presentation, and age influence the severity of these relationship dynamics. For instance, younger children and those with hyperactive-impulsive presentations tend to have higher conflict levels with teachers.

Additionally, the research emphasizes the reciprocal nature of these relationships: ADHD symptoms may exacerbate teacher frustration, while negative teacher-student interactions can intensify student behavioral challenges.

Conclusion

This meta-analysis highlights the critical role of student-teacher relationships in the development of children with ADHD. The findings underline the need for targeted interventions that foster positive teacher-student interactions and reduce conflict. Addressing these relationship dynamics could enhance academic performance, social integration, and emotional well-being for children with ADHD. Future research should explore the causal pathways between ADHD symptoms and relationship quality to better inform educational strategies and support systems.

November 25, 2024