August 23, 2021

Behavioral and Cognitive Impacts of Mindfulness-Based Interventions on Adults with ADHD

A Canadian team has published a systematic review examining the effectiveness of Mindfulness-Based Interventions (MBIs) for treating adults with ADHD. MBIs usually involve three forms of meditation “ body scan, sitting meditation, and mindful yoga “ that are intended to cultivate nonjudgmental awareness of the present-moment experience. The team reviewed thirteen studies.

Three were single-group studies with no control group. One used dialectical behavior therapy (DBT). It reported mild to moderate improvements in ADHD symptoms, and substantial improvements in neurocognitive function (with standardized mean difference effect sizes from .99 to 2.22). A second enrolled both adults and adolescents in a mindful awareness program (MAP)which included a psychoeducational component. It found improvements in itself-reported ADHD symptoms, with standardized mean difference (SMD) effect sizes running from .50 to.93. Following training, it also reported improvement in attentional conflict (.93) set-shifting (.43). The third study also used DBT, which focused on acceptance, mindfulness, functional behavioral analysis, and psychoeducation. ADHD symptoms showed mild improvement (.22), and functional impairment was slightly reduced (.15) and remained stable at the 3-month follow-up.

The other ten studies used control groups. One used MAP and carefully stratified participants based on their ADHD medication status, then randomly assigned them to mindfulness treatment or waitlist. It reported large effect sizes in the improvement of self-reported and clinician ratings of ADHD symptoms (1.35 to 3.14), executive functioning (1.45 to 2.67), and self-reported emotion regulation (1.27 to 1.63). Another study non randomly assigned adults to either mindfulness-based training (MBT) or skills training. Effect sizes were small to medium (.06 to .49), with 31% of MBT participants showing some improvement, versus only 11% of skills training participants.

Another study involved a controlled trial of college students with ADHD, randomized to receive either MBT or skills treatments. Treatment response rates were higher for MBT (59-65%, vs. 19-25%). In follow-up, the effect size for MBT on ADHD symptoms was large (.84), and similarly large on executive functioning (.81).

Another study tried a year's worth of mindfulness training for poor responders to medication. Participants who received the treatment were compared to others who were waitlisted. The study reported a medium effect size(.63) in reducing the severity of ADHD.

Another looked at the impact of MAP on affective problems and impaired attention. It compared adults with ADHD and healthy controls who participated in MAP sessions with similar patients and controls who did not. The authors reported that MAP improved sustained attention and mood, with medium to large effect sizes (.50 to .80).

A recent study explored the impact of MAP on neurocognitive performance with a randomized controlled trial. Following an 8-week mindfulness training, researchers found a significant decrease in ADHD symptoms and significant improvement in task performance in both the MAP and the psychoeducation comparison group post- versus pre-intervention but did not find evidence for a significant main effect of treatment or a significant interaction effect on any ADHD symptoms (self-and observer-rated) nor on task performance (WM).

Another study randomly assigned adults with ADHD either to the waitlist or mindfulness-based cognitive therapy (MBCT). It found that MBCT led to a medium-to-large reduction in self-reported ADHD symptoms (.64) and a large reduction in investigator-reported symptoms (.78). It also found large(.93) improvements in executive functioning.

An 11th study looked at the effects of MBCT on neuropsychological correlates (event-related potentials (ERPs)) of performance monitoring in adults with ADHD. Half the patients were randomly assigned tomb cut, and the other half to the waitlist. MBCT produced reduced inattention, hyperactivity/impulsivity, and global ADHD index symptoms with medium to large effect sizes (.49 to .93).

A 12th study randomly assigned college students to MBCT or waitlist. At follow-up, participants who had received MBCT exhibited large (1.26) reductions in ADHD symptoms as well as greater treatment response rates (57%-71% vs. 23%-31%) versus waitlist. They also registered a greater improvement in most neuropsychological performance and attentional scores.

Finally, another study compared the efficacy of MBCT plus treatment as usual (TAU) versus TAU only in reducing core symptoms in adults with ADHD. Participants were randomly assigned to an 8-weekly group therapy including meditation exercises, psycho-education, and group discussions, or TAU only, including pharmacotherapy and/or psychoeducation. At 6-month follow-up, MBCT+TAU patients reported large (SMD = .79) improvements in ADHD symptoms relative to patients.

Overall, these are promising results of mindfulness-based interventions, and all the more so for those who do not respond well to drug therapy. Nevertheless, they must be seen as tentative. The total of participants overall in thirteen studies was just 753, or an average of only 58 per study. There was too much variation in the studies to perform a meta-analysis. Only one of the studies included a healthy (non-ADHD) control group. And only one study received a perfect score from Cochrane Collaboration standards.  Most studies did not use a suitable control group, i.e., one in which there was an expectation of benefit from participating.  As the authors noted, "Attrition bias was found to have high or unclear risk in more than a half of the studies. The reason for dropout of participants was not always clearly specified in those studies, so it is difficult to decide if it might be related to adverse effects or some discomfort with treatment or instead to some incidental reasons."

HeÌleÌ€nePoissant, Adrianna Mendrek, NadineTalbot, Bassam Khoury, and Jennifer Nolan, "Behavioral and Cognitive Impacts of mindfulness-Based Interventions on Adults with Attention-Deficit HyperactivityDisorder: A Systematic Review," Behavioural Neurology, Vol. 2019, ArticleID 5682050, 16 pages, https://doi.org/10.1155/2019/5682050.

Related posts

No items found.

Meta-analysis of Non-invasive Brain Stimulation Finds Limited Evidence of Efficacy

Background: 

Pharmacotherapies, such as methylphenidate, are highly effective for short-term ADHD management, but issues remain with medication tolerability and adherence. Some patients experience unwanted side effects from stimulant medications, leaving them searching for alternative ADHD treatments. Alternative treatments such as cognitive training, behavioral therapies, psychological interventions, neurofeedback, and dietary changes have, so far, shown limited success. Thus, there is a critical need for non-pharmacological options that boost neurocognitive performance and address core ADHD symptoms.

First— What Are NIBS (Non-Invasive Brain Stimulation) Techniques?

Non-invasive brain stimulation (NIBS) techniques, including transcranial direct current stimulation (tDCS), transcranial random noise stimulation (tRNS), transcranial alternating current stimulation (tACS), and repetitive transcranial magnetic stimulation (rTMS) are generating growing attention within the scientific community. 

NIBS techniques are methods that use external stimulation, such as magnets or electrical currents, to affect brain activity without any invasive procedures. In transcranial alternating current stimulation (tACS), for example, small electrodes are placed on the scalp of the patient, and a weak electrical current is administered. 

The theory behind these techniques is that when a direct current is applied between two or more electrodes placed on specific areas of the head, it makes certain neurons more or less likely to fire. This technique has been successfully used to treat conditions like depression and anxiety, and to aid recovery from stroke or brain injury. 

The Study: 

Previous meta-analyses have produced conflicting indications of efficacy. A Chinese research team consisting of sports and rehabilitative medicine professionals has just published a network meta-analysis to explore this further, through direct comparison of five critical outcome domains: inhibitory control, working memory, cognitive flexibility, inattention, hyperactivity and impulsivity.

To be included, randomized controlled trials needed to have participants diagnosed with ADHD, use sham control groups, and assess ADHD symptoms and executive functions – such as inhibitory control, working memory, cognitive flexibility, inattention, hyperactivity, and impulsivity – using standardized tests.

A total of thirty-seven studies encompassing 1,615 participants satisfied the inclusion criteria. It is worth noting, however, that the authors did not specify the number of randomized controlled trials nor the number of participants included in each arm of the network meta-analysis.

Furthermore, the team stated, “We checked for potential small study effects and publication bias by conducting comparison-adjusted funnel plots,” but did not share their findings. They also did not provide information on outcome variation (heterogeneity) among the RCTs.

Results:

Ultimately, none of the interventions produced significant improvements in ADHD symptoms, whether in inattention symptoms or hyperactivity/impulsivity symptoms.  Likewise, none of the interventions produced significant improvements in inhibitory control. Some tDCS interventions enhanced working memory and cognitive flexibility, but details about trial numbers and participants were missing. The team concluded, “none of the NIBS interventions significantly improved inhibitory control compared to sham controls. … In terms of working memory, anodal tDCS over the left DLPFC plus cathodal tDCS over the right DLPFC … and anodal tDCS over the right inferior frontal cortex (rIFC) plus cathodal tDCS over the right supraorbital area ... were associated with significant improvements compared to sham stimulation. For cognitive flexibility, only anodal tDCS over the left DLPFC plus cathodal tDCS over the right supraorbital area demonstrated a statistically significant benefit relative to sham. ... Compared to the sham controls, none of the NIBS interventions significantly improved inattention. ... Compared to the sham controls, none of the NIBS interventions significantly improved hyperactivity and impulsivity.”

How Should We Interpret These Results?

In a word, skeptically.

If one were to read just the study’s abstract, which states, “The dual-tDCS and a-tDCS may be considered among the preferred NIBS interventions for improving cognitive function in ADHD”, it might seem that the takeaway from this study is that this combination of brain stimulation techniques might be a viable treatment option for those with ADHD. Upon closer inspection, however, the results do not suggest that any of these methods significantly improve ADHD symptoms. Additionally, this study suffers from quite a few methodological flaws, so any results should be viewed critically.

October 31, 2025

Meta-analysis of Transcranial Direct Current Stimulation Still Yields Little Sign of Efficacy

Background:

Despite recommendations for combined pharmacological and behavioral treatment in childhood ADHD, caregivers may avoid these options due to concerns about side effects or the stigma that still surrounds stimulant medications. Alternatives like psychosocial interventions and environmental changes are limited by questionable effectiveness for many patients. Increasingly, patients and caregivers are seeking other therapies, such as neuromodulation – particularly transcranial direct current stimulation (tDCS). 

tDCS seeks to enhance neurocognitive function by modulating cognitive control circuits with low-intensity scalp currents. There is also evidence that tDCS can induce neuroplasticity. However, results for ADHD symptom improvement in children and adolescents are inconsistent. 

The Method:

To examine the evidence more rigorously, a Taiwanese research team conducted a systematic search focusing exclusively on randomized controlled trials (RCTs) that tested tDCS in children and adolescents diagnosed with ADHD. They included only studies that used sham-tDCS as a control condition – an essential design feature that prevents participants from knowing whether they received the active treatment, thereby controlling for placebo effects. 

The Results:

Meta-analysis of five studies combining 141 participants found no improvement in ADHD symptoms for tDCS over sham-TDCS. That held true for both the right and left prefrontal cortex. There was no sign of publication bias, nor of variation (heterogeneity) in outcomes among the RCTs.  

Meta-analysis of six studies totaling 171 participants likewise found no improvement in inattention symptoms, hyperactivity symptoms, or impulsivity symptoms for tDCS over sham-TDCS. Again, this held true for both the right and left prefrontal cortex, and there was no sign of either publication bias or heterogeneity. 

Most of the RCTs also performed follow-ups roughly a month after treatment, on the theory that induced neuroplasticity could lead to later improvements. 

Meta-analysis of four RCTs combining 118 participants found no significant improvement in ADHD symptoms for tDCS over sham-TDCS at follow-up. This held true for both the right and left prefrontal cortex, with no sign of either publication bias or heterogeneity. 

Meta-analysis of five studies totaling 148 participants likewise found no improvement in inattention symptoms or hyperactivity symptoms for tDCS over sham-TDCS at follow-up. AS before, this was true for both the right and left prefrontal cortex, with no sign of either publication bias or heterogeneity. 

The only positive results came from meta-analysis of the same five studies, which reported a medium effect size improvement in impulsivity symptoms at follow-up. Closer examination showed no improvement from stimulation of the right prefrontal cortex, but a large effect size improvement from stimulation of the left prefrontal cortex

Interpretation: 

It is important to note that the one positive result was from three RCTs combining only 90 children and adolescents, a small sample size. Moreover, when only one of sixteen combinations yields a positive outcome, that begins to look like p-hacking for a positive result. 

In research, scientists use something called a “p-value” to determine if their findings are real or just due to chance. A p-value below 0.05 (or 5%) is considered “statistically significant,” meaning there's less than a 5% chance the result happened by pure luck. 

When testing twenty outcomes by this standard, one would expect one to test positive by chance even if there is no underlying association. In this case, one in 16 comes awfully close to that. 

To be sure, the research team straightforwardly reported all sixteen outcomes, but offered an arguably over-positive spin in their conclusion: “Our study only showed tDCS-associated impulsivity improvement in children/adolescents with ADHD during follow-ups and anode placement on the left PFC. ... our findings based on a limited number of available trials warrant further verification from large-scale clinical investigations.” 

October 24, 2025

Meta-analysis Suggests Motor Competence Deficits Associated with ADHD, But With Methodological Shortcomings

Children and adolescents with ADHD tend to be less active and more sedentary than their typically developing peers. This is concerning, since physical activity benefits mental, physical, and social development. For youth with ADHD, being active can improve symptoms like inattention, working memory, and inhibitory control. 

A major barrier to physical activity for children and adolescents with ADHD is limited motor competence. This stems from challenges in developing basic motor skills and more complex abilities needed for sports and advanced movements. 

Difficulties in developing fundamental movement skills – such as locomotor (running, jumping), object-control (throwing, catching), and stability skills (balancing, turning) – can reduce motor competence and limit physical activity. These basic movements are learned and refined with practice and age, not innate abilities. 

To date, research on the link between ADHD and motor competence has remained inconclusive. This systematic review and meta-analysis by a Spanish research team therefore aimed to determine whether children and adolescents with ADHD differ in motor competence from those with typical development (TD). 

Studies had to include children and adolescents diagnosed with ADHD. They had to involve a full motor assessment battery, not just one test, and present motor competence data for both ADHD and TD groups. 

The team excluded studies involving participants with other neurodevelopmental disorders or cognitive impairments, unless separate data for the ADHD subgroup were reported. 

Meta-analysis of six studies combining 323 children and adolescents found that typically developing individuals were twelve times more likely to score in the 5th percentile of the Movement Assessment Battery for Children as their peers diagnosed with ADHD. They were also three times more likely to score in the 15th percentile (five studies, 289 participants). Results were consistent across the studies (low heterogeneity). All included studies were randomized. 

Meta-analysis of five studies totaling 198 participants using the Test of Gross Motor Development reported significant deficits in both locomotor skills and object control skills among children and adolescents diagnosed with ADHD relative to their typically developing peers. In this case, however, results were inconsistent across studies (very high heterogeneity), and one of the studies was unrandomized. Because the team published only unstandardized mean differences, there was no indication of effect sizes. 

Meta-analysis of two studies encompassing 164 participants using the Bruininks-Oseretsky Test of Motor Proficiency similarly yielded significant deficits among children and adolescents diagnosed with ADHD relative to their typically developing peers, but in this case with low heterogeneity. Notably, one of the two studies was not randomized. 

Moreover, the team made no assessment of publication bias. 

The team concluded, “The findings of this review indicate that children and adolescents with ADHD show significantly lower levels of motor competence compared to their TD peers. This trend was evident across a range of validated assessment tools, including the MABC, BOT, TGMD, and other standardized test batteries. Future research should aim to reduce methodological heterogeneity and further investigate the influence of factors such as ADHD subtypes and comorbid conditions on motor development trajectories.” 

However, without a publication bias assessment, reliance on unrandomized studies in two of the tests, no indication of effect size in the same two tests, and small sample sizes, these results are at best suggestive, and will require further research to confirm. 

October 21, 2025