Cookie Preferences
By clicking, you agree to store cookies on your device to enhance navigation, analyze usage, and support marketing. More Info
Thank you! Your submission has been received!
Oops! Something went wrong while submitting the form.
January 27, 2025

Organic farming aims to protect biodiversity, promote animal welfare, and avoid using pesticides and fertilizers made from petrochemicals. Some pesticides are designed to target insects’ nervous systems but can also affect brain development and health in larger animals, including humans.
Many people believe organic food is healthier than conventionally produced food, which might be true for certain foods and health factors. But does eating organic food during pregnancy impact the chances of a child developing ADHD or autism spectrum disorder (ASD)?
In Norway, researchers can use detailed national health records to study these connections on a population-wide level, thanks to the country’s single-payer healthcare system and national registries.
The Norwegian Mother, Father, and Child Cohort Study (MoBa) invites parents to participate voluntarily and has a 41% participation rate. The study includes:
For this research, a team tracked 40,707 mother-child pairs from children born between 2002 and 2009. They used questionnaires to measure how much organic food mothers consumed during pregnancy. ADHD and ASD symptoms in children were assessed using validated rating scales.
The final analysis included:
The researchers adjusted for factors like maternal age, education, previous pregnancies, BMI before pregnancy, smoking and alcohol use during pregnancy, birth year and season, and the child’s sex.
The researchers concluded that eating organic food during pregnancy has no meaningful effect on the likelihood of a child developing ADHD or ASD. They stated, “The results do not indicate any clinically significant protective or harmful effects of eating organic food during pregnancy on symptoms of ADHD and ASD in the offspring. Based on these findings, we do not recommend any specific advice regarding intake of organic food during pregnancy.”
Johanne T. Instanes, Berit S. Solberg, Liv G. Kvalvik, Kari Klungsøyr, Maj‑Britt R. Posserud, Catharina A. Hartman, and Jan Haavik, “Organic food consumption during pregnancy and symptoms of neurodevelopmental disorders at 8 years of age in the offspring: the Norwegian Mother, Father and Child Cohort Study (MoBa),” BMC Medicine (2024), 22:482, https://doi.org/10.1186/s12916-024-03685-5.
If we are to read what we believe on the Internet, dieting can cure many of the ills faced by humans. Much of what is written is true. Changes in dieting can be good for heart disease, diabetes, high blood pressure, and kidney stones to name just a few examples. But what about ADHD? Food elimination diets have been extensively studied for their ability to treat ADHD. They are based on the very reasonable idea that allergies or toxic reactions to foods can have effects on the brain and could lead to ADHD symptoms.
Although the idea is reasonable, it is not such an easy task to figure out what foods might cause allergic reactions that could lead to ADHD symptoms. Some proponents of elimination diets have proposed eliminating a single food, others include multiple foods, and some go as far as to allow only a few foods to be eaten to avoid all potential allergies. Most readers will wonder if such restrictive diets, even if they did work, are feasible. That is certainly a concern for very restrictive diets.
Perhaps the most well-known ADHD diet is the Feingold diet(named after its creator). This diet eliminates artificial food colorings and preservatives that have become so common in the western diet. Some have claimed that the increasing use of colorings and preservatives explains why the prevalence of ADHD is greater in Western countries and has been increasing over time. But those people have it wrong. The prevalence of ADHD is similar around the world and has not been increasing over time. That has been well documented but details must wait for another blog.
The Feingold and other elimination diets have been studied by meta-analysis. This means that someone analyzed several well-controlled trials published by other people. Passing the test of meta-analysis is the strongest test of any treatment effect. When this test is applied to the best studies available, there is evidence that the exclusion of fool colorings helps reduce ADHD symptoms. But more restrictive diets are not effective. So removing artificial food colors seems like a good idea that will help reduce ADHD symptoms. But although such diets ‘work’, they do network very well. On a scale of one to 10where 10 is the best effect, drug therapy scores 9 to 10 but eliminating food colorings scores only 3 or 4. Some patients or parents of patients might want this diet change first in the hopes that it will work well for them. That is a possibility, but if that is your choice, you should not delay the more effective drug treatments for too long in the likely event that eliminating food colorings is not sufficient. You can learn more about elimination diets from Nigg, J. T., and K.Holton (2014). "Restriction and elimination diets in ADHD treatment."Child Adolesc Psychiatr Clin N Am 23(4): 937-953.
Keep in mind that the treatment guidelines from professional organizations point to ADHD drugs as the first-line treatment for ADHD. The only exception is for preschool children where medication is only the first-line treatment for severe ADHD; the guidelines recommend that other preschoolers with ADHD be treated with non-pharmacologic treatments, when available. You can learn more about non-pharmacologic treatments for ADHD from a book I recently edited: Faraone, S. V. &Antshel, K. M. (2014). ADHD: Non-Pharmacologic Interventions. Child AdolescPsychiatr Clin N Am 23, xiii-xiv.
According to Vox, "Homeopathy is a $1.2 billion industry in the US alone, used by an estimated 5 million adults and 1 million kids. It's become such a staple of America's wellness industry that leading brands such as Boiron and Hyland's are readily available at high-end health-focused chains like Whole Foods and sprouts, supermarkets like Ralph's, and superstores such as Walmart."
Yet, this highly profitable "wellness" industry has shown little to no interest in supporting randomized clinical trials (RCTs) to test the efficacy and safety of its products.
In a team of Italian physicians, Rana comprehensive search of the medical literature and found only nine RCTs exploring the efficacy and safety of homeopathic remedies for psychiatric disorders that met the selection criteria.
Only two of these RCTs addressed efficacy for ADHD, with a combined 99 participants. Neither reported any significant effect.
Combining them into a small meta-analysis likewise found no significant effect.
But that's not all. According to the study authors, "The paucity of published trials does not allow a reliable estimate of publication bias, which would require a larger number of studies. This is a major issue since it has been reported that, among completed trials of homeopathy registered on ClinicalTrials.gov, only 46% were published within 2 years of completion, and among these, 25% altered or changed their primary outcomes. It is, therefore, possible that the results of the present meta-analysis are distorted because of selective publication."
The authors conclude, "The most surprising result of this meta-analysis is the paucity of available data from RCTs," and "Based on the very few available trials, homeopathy did not produce any relevant effect on symptoms of ADHD ... Ethical considerations should therefore prevent clinicians from recommending HRs [homeopathic remedies], which have a cost either for patients or for health care systems, until when a sufficient amount of solid evidence becomes available."
Several meta-analyses have assessed this question by computing the Standardized Mean Difference or SMD statistic. The SMD is a measure that allows us to compare different studies. For context, the effect of stimulant medication for treating ADHD is about 0.9. SMDs less than 0.3 are considered low, between 0.3 to 0.6 medium, and anything greater than high.
A 2004 meta-analysis combined the results of fifteen studies with a total of 219 participants and found a small association(SMD = .28, 95% CI .08-.49) between consumption of artificial food colors by children and increased hyperactivity. Excluding the smallest and lowest quality studies further reduced the SMD to .21, and a lower confidence limit of .007 also made it barely statistically significant. Publication bias was indicated by an asymmetric funnel plot. No effort was made to correct the bias.
A 2012 meta-analysis by Nigg et al. combined twenty studies with a total of 794 participants and again found a small effect size (SMD =.18, 95% CI .08-.29). It likewise found evidence of publication bias. Correcting for the bias led to a tiny effect size at the outer margin of statistical significance (SMD = .12, 95% CI .01-.23). Restricting the pool to eleven high-quality studies with 619 participants led to a similarly tiny effect size that fell just outside the 95% confidence interval (SMD = .13, CI =0-.25, p = .053). The authors concluded, "Overall, a mixed conclusion must be drawn. Although the evidence is too weak to justify action recommendations absent a strong precautionary stance, it is too substantial to dismiss."
In 2013 a European ADHD Guidelines Group consisting of 21 researchers (Sonuga-Barke et al.) performed a systematic review and meta-analysis that examined the efficacy of excluding artificial colors from the diets of children and adolescents as a treatment for ADHD. While many interventions showed benefits in unblinded assessments, only artificial food color exclusion and, to a lesser extent, free fatty acid supplementation remained effective under blinded conditions. The findings suggest that eliminating artificial food dyes may meaningfully reduce ADHD symptoms in some children, though it should be noted that the positive results were mostly seen in children with other food sensitivities.
The research to date does suggest a small effect of artificial food colors in aggravating symptoms of hyperactivity in children, and a potential beneficial effect of excluding these substances from the diets of children and adolescents, but the evidence is not very robust. More studies with greater numbers of participants, and better control for the effects of ADHD medications, will be required for a more definitive finding.
In the meantime, given that artificial food colors are not an essential part of the diet, parents could consider excluding them from their children's meals, since doing so is risk-free, and the cost (reading labels) is negligible.
Background:
ADHD treatment includes medication, behavioral therapy, dietary changes, and special education. Stimulants are usually the first choice but may cause side effects like appetite loss and stomach discomfort, leading some to stop using them. Cognitive behavioral therapy (CBT) is effective but not always sufficient on its own. Research is increasingly exploring non-drug options, such as transcranial direct current stimulation (tDCS), which may boost medication effectiveness and improve results.
What is tDCS?
tDCS delivers a weak electric current (1.0–2.0 mA) via scalp electrodes to modulate brain activity, with current flowing from anode to cathode. Anodal stimulation increases neuronal activity, while cathodal stimulation generally inhibits it, though effects vary by region and neural circuitry. The impact of tDCS depends on factors such as current intensity, duration, and electrode shape. It targets cortical areas, often stimulating the dorsolateral prefrontal cortex for ADHD due to its role in cognitive control. Stimulation of the inferior frontal gyrus has also been shown to improve response inhibition, making it another target for ADHD therapy.
There is an ongoing debate about how effective tDCS is for individuals with ADHD. One study found that applying tDCS to the left dorsolateral prefrontal cortex can help reduce impulsivity symptoms in ADHD, whereas another study reported that several sessions of anodic tDCS did not lead to improvements in ADHD symptoms or cognitive abilities.
New Research:
Two recent meta-analyses have searched for a resolution to these conflicting findings. Both included only randomized controlled trials (RCTs) using either sham stimulation or a waitlist for controls.
Each team included seven studies in their respective meta-analyses, three of which appeared in both.
Both Wang et al. (three RCTs totaling 97 participants) and Wen et al. (three RCTs combining 121 participants) reported very large effect size reductions in inattention symptoms from tDCS versus controls. There was only one RCT overlap between them. Wang et al. had moderate to high variation (heterogeneity) in individual study outcomes, whereas Wen et al. had virtually none. There was no indication of publication bias.
Whereas Wen et al.’s same three RCTs found no significant reduction in hyperactivity/impulsivity symptoms, Wang et al. combined five RCTs with 221 total participants and reported a medium effect size reduction in impulsivity symptoms. This time, there was an overlap of two RCTs between the studies. Wen et al. had no heterogeneity, while Wang et al. had moderate heterogeneity. Neither showed signs of publication bias.
Turning to performance-based tasks, Wang et al. reported a medium effect size improvement in attentional performance from tDCS over controls (three RCTs totaling 136 participants), but no improvement in inhibitory control (five RCTs combining 234 persons).
Wang et al. found no significant difference in adverse events (four RCTs combining 161 participants) between tDCS and controls, with no heterogeneity. Wen et al. found no significant difference in dropout rates (4 RCTs totaling 143 individuals), again with no heterogeneity.
Wang et al. concluded, “tDCS may improve impulsive symptoms and inattentive symptoms among ADHD patients without increasing adverse effects, which is critical for clinical practice, especially when considering noninvasive brain stimulation, where patient safety is a key concern.”
Wen et al. further concluded, “Our study supported the use of tDCS for improving the self-reported symptoms of inattention and objective attentional performance in adults diagnosed with ADHD. However, the limited number of available trials hindered a robust investigation into the parameters required for establishing a standard protocol, such as the optimal location of electrode placement and treatment frequency in this setting. Further large-scale double-blind sham-controlled clinical trials that include assessments of self-reported symptoms and performance-based tasks both immediately after interventions and during follow-up periods, as well as comparisons of the efficacy of tDCS targeting different brain locations, are warranted to address these issues.”
The Take-Away:
Previous studies have shown mixed results on the benefits of this therapy on ADHD. These new findings suggest that tDCS may hold some real promise for adults with ADHD. While the technique didn’t meaningfully shift hyperactivity or impulsivity, it was well-tolerated and showed benefit, especially in self-reported symptoms. However, with only a handful of trials to draw from, it would be a mistake to suggest tDCS as a standard treatment protocol. Larger, well-designed studies are the next essential step to clarify where, how, and how often tDCS works best.
Background:
The development of ADHD is strongly associated with functional impairments in the prefrontal cortex, particularly the dorsolateral prefrontal cortex, which plays a key role in maintaining attention and controlling impulses. Moreover, imbalances in neurotransmitters like dopamine and norepinephrine are widely regarded as major neurobiological factors contributing to ADHD.
Executive functions are a group of higher-order cognitive skills that guide thoughts and actions toward goals. “Executive function” refers to three main components: inhibitory control, working memory, and cognitive flexibility. Inhibitory control helps curb impulsive actions to stay on track. Working memory allows temporary storage and manipulation of information for complex tasks. Cognitive flexibility enables switching attention and strategies in varied or demanding situations.
Research shows that about 89% of children with ADHD have specific executive function impairments. These difficulties in attention, self-control, and working memory often result in academic and social issues. Without timely intervention, these issues can lead to emotional disorders like depression, anxiety, and irritability, further affecting both physical health and social development.
Currently, primary treatments for executive function deficits in school-aged children with ADHD include medication and behavioral or psychological therapies, such as Cognitive Behavioral Therapy (CBT). While stimulant medications do improve executive function, not all patients are able to tolerate these medications. Behavioral interventions like neurofeedback provide customized care but show variable effectiveness and require specialized resources, making them hard to sustain. Safer, more practical, and long-lasting treatment options are urgently needed.
Exercise interventions are increasingly recognized as a safe, effective way to improve executive function in children with ADHD. However, systematic studies on school-aged children remain limited.
Moreover, there are two main scoring methods for assessing executive function: positive scoring (higher values mean better performance, such as accuracy) and reverse scoring (lower values mean better performance, such as reaction time). These different methods can affect how results are interpreted and compared across studies. This meta-analysis explored how different measurement and scoring methods might influence results, addressing important gaps in the research.
The Study:
Only randomized controlled trials (RCTs) involving school-aged children (6–13 years old) diagnosed with ADHD by DSM-IV, DSM-5, ICD-10, ICD-11, or the SNAP-IV scale were included. Studies were excluded if the experimental group received non-exercise interventions or exercise combined with other interventions.
Cognitive Flexibility
Using positive scoring, exercise interventions were associated with a narrowly non-significant small effect size improvement relative to controls (eight RCTs, 268 children). Using reverse scoring, however, they were associated with a medium effect size improvement (eleven RCTs, 452 children). Variation (heterogeneity) in individual RCT outcomes was moderate, with no sign of publication bias in both instances.
Inhibitory Control
Using positive scoring, exercise interventions were associated with a medium effect size improvement relative to controls (ten RCTs, 421 children). Using reverse scoring, there was an association with a medium effect size improvement (eight RCTs, 265 children). Heterogeneity was moderate with no sign of publication bias in either case.
Working Memory
Using positive scoring, exercise interventions were associated with a medium effect size improvement relative to controls (six RCTs, 321 children). Using reverse scoring, the exercise was associated with a medium effect size improvement (five RCTs, 143 children). Heterogeneity was low with no indication of publication bias in both instances.
Conclusion:
The team concluded, “Exercise interventions can effectively improve inhibitory control and working memory in school-aged children with ADHD, regardless of whether positive or reverse scoring methods are applied. However, the effects of exercise on cognitive flexibility appear to be limited, with significant improvements observed only under reverse scoring. Moreover, the effects of exercise interventions on inhibitory control, working memory, and cognitive flexibility vary across different measurement paradigms and scoring methods, indicating the importance of considering these methodological differences when interpreting results.”
Although this work is intriguing, it does not show that exercise significantly improves the symptoms of ADHD in children. This means that exercise, although beneficial for many reasons, should not be viewed as a replacement for evidence-based treatments for the disorder.
A recent Wall Street Journal article raised alarms by concluding that many children who start medication for ADHD will later end up on several psychiatric drugs. It’s an emotional topic that will make many parents, teachers, and even doctors worry: “Are we putting kids on a conveyor belt of medications?”
The article seeks to shine a light on the use of more than one psychiatric medication for children with ADHD. My biggest worry about the article is that it presents itself as a scientific study because they analyzed a database. It is not a scientific study. It is a journalistic investigation that does not meet the standards of a scientific report..
The WJS brings attention to several issues that parents and prescribers should think about. It documents that some kids with ADHD are on more than one psychiatric medication, and some are receiving drugs like antipsychotics, which have serious side effects. Is that appropriate? Access to good therapy, careful evaluation, and follow-up care can be lacking, especially for low-income families. Can that be improved? On that level, the article is doing something valuable: it’s shining a spotlight on potential problems.
It is, of course, fine for a journalist to raise questions, but it is not OK for them to pretend that they’ve done a scientific investigation that proves anything. Journalism pretending to be science is both bad science and bad journalism.
Journalism vs. Science: Why Peer Review Matters
Journalists can get big datasets, hire data journalists, and present numbers that look scientific. But consider the differences between Journalism and Science. These types of articles are usually checked by editors and fact-checkers. Their main goals are:
Is this fact basically correct?
Are we being fair?
Are we avoiding legal problems?
But editors are not qualified to evaluate scientific data analysis methods. Scientific reports are evaluated by experts who are not part of the project. They ask tough questions like:
Exactly how did you define ADHD?
How did you handle missing data?
Did you address confounding?
Did you confuse correlation with causation?
If the authors of the study cannot address these and other technical issues, the paper is rejected.
The WSJ article has the veneer of science but lacks its methodology.
Correlation vs. Causation: A Classic Trap
The article’s storyline goes something like this: A kid starts ADHD medication. She has additional problems or side effects caused by the ADHD medications. Because of that, the prescriber adds more drugs. That leads to the patient being put on several drugs. Although it is true that some ADHD youth are on multiple drugs, the WSJ is wrong to conclude that the medications for ADHD cause this to occur. That simply confuses correlation with causation, which only the most naïve scientist would do.
In science, this problem is called confounding. It means other factors (like how severe or complex a child’s condition is) explain the results, not just the thing we’re focused on (medication for ADHD).
The WSJ analyzed a database of prescriptions. They did not survey the prescribers who made the prescriptions of the patients who received them. So they cannot conclude that ADHD medication caused the later prescriptions, or that the later medications were unnecessary or inappropriate.
Other explanations are very likely. It has been well documented that youth with ADHD are at high risk for developing other disorders such as anxiety, depression, and substance use. The kids in the WSJ database might have developed these disorders and needed several medications. A peer-reviewed article in a scientific journal would be expected to adjust for other diagnoses. If that is not possible, as it is in the case of the WSJ’s database, a journal would not allow the author to make strong conclusions about cause-and-effect.
Powerful Stories Don’t Always Mean Typical Stories
The article includes emotional accounts of children who seemed harmed by being put on multiple psychiatric drugs. Strong, emotional stories can make rare events feel common. They also frighten parents and patients, which might lead some to decline appropriate care.
These stories matter. They remind us that each data point is a real person. But these stories are the weakest form of data. They can raise important questions and lead scientists to design definitive studies, but we cannot use them to draw conclusions about the experiences of other patients. These stories serve as a warning about the importance of finding a qualified provider, not as against the use of multiple medications. That decision should be made by the parent or adult patient based on an informed discussion with the prescriber.
Many children and adults with ADHD benefit from multiple medications. The WSJ does not tell those stories, which creates an unbalanced and misleading presentation.
Newspapers frequently publish stories that send the message: “Beware! Doctors are practicing medicine in a way that will harm you and your family.” They then use case studies to prove their point. The title of the article is, itself, emotional clickbait designed to get more readers and advertising revenue. Don’t be confused by such journalistic trickery.
What Should We Conclude?
Here’s a balanced way to read the article. It is true that some patients are prescribed more than one medication for mental health problems. But the article does not tell us whether this prescribing practice is or is not warranted for most patients. I agree that the use of antipsychotic medications needs careful justification and close monitoring. I also agree that patients on multiple medications should be monitored closely to see if some of the medications can be eliminated. Many prescribers do exactly that, but the WSJ did not tell their stories.
It is not appropriate to conclude that ADHD medications typically cause combined pharmacotherapy or to suggest that combined pharmacotherapy is usually bad. The data presented by the WSJ does not adequately address these concerns. It does not prove that medications for ADHD cause dangerous medication cascades.
We have to remember that even when a journalist analyzes data, that is not the same as a peer-reviewed scientific study. Journalism pretending to be science is both bad science and bad journalism.
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. More Info
By clicking, you agree to store cookies on your device to enhance navigation, analyze usage, and support marketing. More Info