Cookie Preferences
By clicking, you agree to store cookies on your device to enhance navigation, analyze usage, and support marketing. More Info
Thank you! Your submission has been received!
Oops! Something went wrong while submitting the form.
January 27, 2025

Organic farming aims to protect biodiversity, promote animal welfare, and avoid using pesticides and fertilizers made from petrochemicals. Some pesticides are designed to target insects’ nervous systems but can also affect brain development and health in larger animals, including humans.
Many people believe organic food is healthier than conventionally produced food, which might be true for certain foods and health factors. But does eating organic food during pregnancy impact the chances of a child developing ADHD or autism spectrum disorder (ASD)?
In Norway, researchers can use detailed national health records to study these connections on a population-wide level, thanks to the country’s single-payer healthcare system and national registries.
The Norwegian Mother, Father, and Child Cohort Study (MoBa) invites parents to participate voluntarily and has a 41% participation rate. The study includes:
For this research, a team tracked 40,707 mother-child pairs from children born between 2002 and 2009. They used questionnaires to measure how much organic food mothers consumed during pregnancy. ADHD and ASD symptoms in children were assessed using validated rating scales.
The final analysis included:
The researchers adjusted for factors like maternal age, education, previous pregnancies, BMI before pregnancy, smoking and alcohol use during pregnancy, birth year and season, and the child’s sex.
The researchers concluded that eating organic food during pregnancy has no meaningful effect on the likelihood of a child developing ADHD or ASD. They stated, “The results do not indicate any clinically significant protective or harmful effects of eating organic food during pregnancy on symptoms of ADHD and ASD in the offspring. Based on these findings, we do not recommend any specific advice regarding intake of organic food during pregnancy.”
Johanne T. Instanes, Berit S. Solberg, Liv G. Kvalvik, Kari Klungsøyr, Maj‑Britt R. Posserud, Catharina A. Hartman, and Jan Haavik, “Organic food consumption during pregnancy and symptoms of neurodevelopmental disorders at 8 years of age in the offspring: the Norwegian Mother, Father and Child Cohort Study (MoBa),” BMC Medicine (2024), 22:482, https://doi.org/10.1186/s12916-024-03685-5.
If we are to read what we believe on the Internet, dieting can cure many of the ills faced by humans. Much of what is written is true. Changes in dieting can be good for heart disease, diabetes, high blood pressure, and kidney stones to name just a few examples. But what about ADHD? Food elimination diets have been extensively studied for their ability to treat ADHD. They are based on the very reasonable idea that allergies or toxic reactions to foods can have effects on the brain and could lead to ADHD symptoms.
Although the idea is reasonable, it is not such an easy task to figure out what foods might cause allergic reactions that could lead to ADHD symptoms. Some proponents of elimination diets have proposed eliminating a single food, others include multiple foods, and some go as far as to allow only a few foods to be eaten to avoid all potential allergies. Most readers will wonder if such restrictive diets, even if they did work, are feasible. That is certainly a concern for very restrictive diets.
Perhaps the most well-known ADHD diet is the Feingold diet(named after its creator). This diet eliminates artificial food colorings and preservatives that have become so common in the western diet. Some have claimed that the increasing use of colorings and preservatives explains why the prevalence of ADHD is greater in Western countries and has been increasing over time. But those people have it wrong. The prevalence of ADHD is similar around the world and has not been increasing over time. That has been well documented but details must wait for another blog.
The Feingold and other elimination diets have been studied by meta-analysis. This means that someone analyzed several well-controlled trials published by other people. Passing the test of meta-analysis is the strongest test of any treatment effect. When this test is applied to the best studies available, there is evidence that the exclusion of fool colorings helps reduce ADHD symptoms. But more restrictive diets are not effective. So removing artificial food colors seems like a good idea that will help reduce ADHD symptoms. But although such diets ‘work’, they do network very well. On a scale of one to 10where 10 is the best effect, drug therapy scores 9 to 10 but eliminating food colorings scores only 3 or 4. Some patients or parents of patients might want this diet change first in the hopes that it will work well for them. That is a possibility, but if that is your choice, you should not delay the more effective drug treatments for too long in the likely event that eliminating food colorings is not sufficient. You can learn more about elimination diets from Nigg, J. T., and K.Holton (2014). "Restriction and elimination diets in ADHD treatment."Child Adolesc Psychiatr Clin N Am 23(4): 937-953.
Keep in mind that the treatment guidelines from professional organizations point to ADHD drugs as the first-line treatment for ADHD. The only exception is for preschool children where medication is only the first-line treatment for severe ADHD; the guidelines recommend that other preschoolers with ADHD be treated with non-pharmacologic treatments, when available. You can learn more about non-pharmacologic treatments for ADHD from a book I recently edited: Faraone, S. V. &Antshel, K. M. (2014). ADHD: Non-Pharmacologic Interventions. Child AdolescPsychiatr Clin N Am 23, xiii-xiv.
According to Vox, "Homeopathy is a $1.2 billion industry in the US alone, used by an estimated 5 million adults and 1 million kids. It's become such a staple of America's wellness industry that leading brands such as Boiron and Hyland's are readily available at high-end health-focused chains like Whole Foods and sprouts, supermarkets like Ralph's, and superstores such as Walmart."
Yet, this highly profitable "wellness" industry has shown little to no interest in supporting randomized clinical trials (RCTs) to test the efficacy and safety of its products.
In a team of Italian physicians, Rana comprehensive search of the medical literature and found only nine RCTs exploring the efficacy and safety of homeopathic remedies for psychiatric disorders that met the selection criteria.
Only two of these RCTs addressed efficacy for ADHD, with a combined 99 participants. Neither reported any significant effect.
Combining them into a small meta-analysis likewise found no significant effect.
But that's not all. According to the study authors, "The paucity of published trials does not allow a reliable estimate of publication bias, which would require a larger number of studies. This is a major issue since it has been reported that, among completed trials of homeopathy registered on ClinicalTrials.gov, only 46% were published within 2 years of completion, and among these, 25% altered or changed their primary outcomes. It is, therefore, possible that the results of the present meta-analysis are distorted because of selective publication."
The authors conclude, "The most surprising result of this meta-analysis is the paucity of available data from RCTs," and "Based on the very few available trials, homeopathy did not produce any relevant effect on symptoms of ADHD ... Ethical considerations should therefore prevent clinicians from recommending HRs [homeopathic remedies], which have a cost either for patients or for health care systems, until when a sufficient amount of solid evidence becomes available."
Several meta-analyses have assessed this question by computing the Standardized Mean Difference or SMD statistic. The SMD is a measure that allows us to compare different studies. For context, the effect of stimulant medication for treating ADHD is about 0.9. SMDs less than 0.3 are considered low, between 0.3 to 0.6 medium, and anything greater than high.
A 2004 meta-analysis combined the results of fifteen studies with a total of 219 participants and found a small association(SMD = .28, 95% CI .08-.49) between consumption of artificial food colors by children and increased hyperactivity. Excluding the smallest and lowest quality studies further reduced the SMD to .21, and a lower confidence limit of .007 also made it barely statistically significant. Publication bias was indicated by an asymmetric funnel plot. No effort was made to correct the bias.
A 2012 meta-analysis by Nigg et al. combined twenty studies with a total of 794 participants and again found a small effect size (SMD =.18, 95% CI .08-.29). It likewise found evidence of publication bias. Correcting for the bias led to a tiny effect size at the outer margin of statistical significance (SMD = .12, 95% CI .01-.23). Restricting the pool to eleven high-quality studies with 619 participants led to a similarly tiny effect size that fell just outside the 95% confidence interval (SMD = .13, CI =0-.25, p = .053). The authors concluded, "Overall, a mixed conclusion must be drawn. Although the evidence is too weak to justify action recommendations absent a strong precautionary stance, it is too substantial to dismiss."
In 2013 a European ADHD Guidelines Group consisting of 21 researchers (Sonuga-Barke et al.) performed a systematic review and meta-analysis that examined the efficacy of excluding artificial colors from the diets of children and adolescents as a treatment for ADHD. While many interventions showed benefits in unblinded assessments, only artificial food color exclusion and, to a lesser extent, free fatty acid supplementation remained effective under blinded conditions. The findings suggest that eliminating artificial food dyes may meaningfully reduce ADHD symptoms in some children, though it should be noted that the positive results were mostly seen in children with other food sensitivities.
The research to date does suggest a small effect of artificial food colors in aggravating symptoms of hyperactivity in children, and a potential beneficial effect of excluding these substances from the diets of children and adolescents, but the evidence is not very robust. More studies with greater numbers of participants, and better control for the effects of ADHD medications, will be required for a more definitive finding.
In the meantime, given that artificial food colors are not an essential part of the diet, parents could consider excluding them from their children's meals, since doing so is risk-free, and the cost (reading labels) is negligible.
While ADHD is a developmental disorder, shaped by biology and genetics, growing evidence shows that it is also influenced by the social and environmental conditions in which children grow up. Research on the social determinants of health emphasizes that development is shaped not only by biology but also by factors such as family income, access to healthcare, neighborhood safety, and material stability. These factors can affect both how developmental challenges appear and whether they are recognized and diagnosed.
Children facing socioeconomic disadvantage consistently show higher risks of developmental and behavioral difficulties. Chronic stress linked to poverty – including financial strain, food insecurity, and limited access to resources – has been associated with problems in attention, emotional regulation, and daily functioning. Children from lower-income families also tend to experience more severe ADHD symptoms and face greater barriers to ongoing care.
Neighborhood conditions matter as well. Unsafe environments can limit opportunities for play and social interaction while increasing caregiver stress, all of which may influence children’s behavior and development. Material hardships, such as food insecurity, can further undermine stability at home.
The Study:
The study analyzed six years of data from the National Survey of Children’s Health (2018–2023), covering more than 205,000 U.S. children aged 3 to 17. After accounting for age, sex, race and ethnicity, region, family structure, survey year, and other social factors, the researchers found a strong income gradient in ADHD prevalence. Compared with children in households earning at least four times the federal poverty level, those in households earning two to four times that level had 28 percent higher odds of ADHD. Odds rose to 70 percent higher in households earning one to two times the poverty level, and more than doubled among children living below the poverty line.
Parental education showed a similar pattern. Compared with children whose parents had completed college, ADHD odds were 20 percent higher among those whose parents had some college education, 40 percent higher among those whose parents had only a high school education, and 80 percent higher among those whose parents had not finished high school.
Children living in unsafe neighborhoods had nearly twice the odds of ADHD compared with those in safe neighborhoods, and food insecurity was also linked to almost double the odds.
By contrast, race and ethnicity alone were associated with much smaller differences. Compared with non-Hispanic White children, children in non-Hispanic Black households had an 18 percent higher likelihood of ADHD, while children in Hispanic households had a 25 percent lower likelihood. No substantial differences were observed for children from other or multiracial households.
Conclusion and Takeaway:
The study team concluded, “Children living in lower-income households, experiencing food insecurity, and residing in unsafe neighborhoods consistently showed higher prevalence and higher adjusted odds of both conditions. … Overall, these findings reinforce the need to view neurodevelopmental disorders within a broader social and structural framework.”
It should be noted that this study is not aiming to name social factors as direct causes of ADHD. Rather, it points to socioeconomic disparities as contributing to the way ADHD develops and how it is treated. This type of research, as well as acknowledging barriers to care, is crucial for clinicians, counselors, teachers, etc., to consider when working with youth with ADHD.
Counting umbilical cord vessels is standard in prenatal ultrasounds and confirmed at birth. Single umbilical artery (SUA) occurs in about 1 in 200 cases, with roughly 10% associated with anomalies, including central nervous system defects. Isolated SUA (iSUA) means one artery is missing without other structural issues.
Research on SUA, especially isolated iSUA, and childhood neurodevelopmental disorders (NDD) is limited and inconclusive. iSUA is linked to preterm birth and small-for-gestational age (SGA), both of which are NDD risk factors.
This Norwegian nationwide population study aimed to assess NDD risk in children with iSUA at birth, the influence of sex, and how preterm birth and SGA mediate this relationship.
The nation’s universal single-payer health insurance and comprehensive population registries made it possible to analyze all 858,397 single births occurring from 1999 to 2013, with follow-up continuing through 2019. Among these cases, 3,532 involved iSUA.
After adjusting for confounders such as parental age, education, and maternal health factors, no overall link was found between iSUA and later ADHD diagnosis. However, females with iSUA had about a 40% higher risk of subsequent ADHD compared to those without iSUA, even after adjustment.
The authors concluded, “The present study indicates that iSUA is weakly associated with ID [intellectual disability] and ADHD, and these associations are influenced by sex. This association is mediated negligibly through preterm birth and SGA. The associations were not clinically significant, and the absence of associations of iSUA with other NDD is reassuring. This finding can be useful in the counseling of expectant parents of fetuses diagnosed with iSUA.”
Refractive errors, such as myopia (nearsightedness), hyperopia (farsightedness), and astigmatism (distorted vision due to irregular curvature of the eye or lens), are common worldwide. These conditions affect 12%, 5%, and 15% of children, and rise significantly in adults to 26.5%, 31%, and 40%. Additionally, strabismus (misalignment of the eyes) and amblyopia (reduced vision in one eye from uneven image formation, often linked to strabismus) occur globally at rates of 2% and 1.4%, respectively.
Visual impairment can affect children’s concentration in school, and studies suggest a link between eye disorders and ADHD.
To investigate this relationship, two researchers – one based in the US and the other in Israel –carried out a nationwide retrospective cohort study using electronic medical records of all insured individuals aged 5 to 30 who were part of Maccabi Health Services, Israel’s second largest health maintenance organization, between 2010 and 2022.
Of over 1.6 million insured members (2010–2020), inclusion/exclusion criteria and propensity score matching for age and sex were applied, along with a one-year wash-out period between the first eye diagnosis and ADHD diagnosis. In total, 221,707 cases were matched with controls without eye disorders at a 1:2 ratio, resulting in a cohort of 665,121 participants.
Overall, those with any previous eye diagnosis were 40% more likely to have a subsequent ADHD diagnosis. This was slightly higher for females (45%) than for males (35%). It was also slightly higher for children and adolescents (42%) than for adults (37%).
More specifically:
The authors concluded that eye disorders are associated with ADHD. They noted these associations were more marked in females and children and adolescents, although, as noted above, those differences were small. They recommended that primary care providers and neurologists consider risk stratification for early screening, and that ophthalmologists refer high-risk patients for ADHD evaluation.
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. More Info
By clicking, you agree to store cookies on your device to enhance navigation, analyze usage, and support marketing. More Info