Cookie Preferences
By clicking, you agree to store cookies on your device to enhance navigation, analyze usage, and support marketing. More Info
Thank you! Your submission has been received!
Oops! Something went wrong while submitting the form.
January 27, 2025

Organic farming aims to protect biodiversity, promote animal welfare, and avoid using pesticides and fertilizers made from petrochemicals. Some pesticides are designed to target insects’ nervous systems but can also affect brain development and health in larger animals, including humans.
Many people believe organic food is healthier than conventionally produced food, which might be true for certain foods and health factors. But does eating organic food during pregnancy impact the chances of a child developing ADHD or autism spectrum disorder (ASD)?
In Norway, researchers can use detailed national health records to study these connections on a population-wide level, thanks to the country’s single-payer healthcare system and national registries.
The Norwegian Mother, Father, and Child Cohort Study (MoBa) invites parents to participate voluntarily and has a 41% participation rate. The study includes:
For this research, a team tracked 40,707 mother-child pairs from children born between 2002 and 2009. They used questionnaires to measure how much organic food mothers consumed during pregnancy. ADHD and ASD symptoms in children were assessed using validated rating scales.
The final analysis included:
The researchers adjusted for factors like maternal age, education, previous pregnancies, BMI before pregnancy, smoking and alcohol use during pregnancy, birth year and season, and the child’s sex.
The researchers concluded that eating organic food during pregnancy has no meaningful effect on the likelihood of a child developing ADHD or ASD. They stated, “The results do not indicate any clinically significant protective or harmful effects of eating organic food during pregnancy on symptoms of ADHD and ASD in the offspring. Based on these findings, we do not recommend any specific advice regarding intake of organic food during pregnancy.”
Johanne T. Instanes, Berit S. Solberg, Liv G. Kvalvik, Kari Klungsøyr, Maj‑Britt R. Posserud, Catharina A. Hartman, and Jan Haavik, “Organic food consumption during pregnancy and symptoms of neurodevelopmental disorders at 8 years of age in the offspring: the Norwegian Mother, Father and Child Cohort Study (MoBa),” BMC Medicine (2024), 22:482, https://doi.org/10.1186/s12916-024-03685-5.
If we are to read what we believe on the Internet, dieting can cure many of the ills faced by humans. Much of what is written is true. Changes in dieting can be good for heart disease, diabetes, high blood pressure, and kidney stones to name just a few examples. But what about ADHD? Food elimination diets have been extensively studied for their ability to treat ADHD. They are based on the very reasonable idea that allergies or toxic reactions to foods can have effects on the brain and could lead to ADHD symptoms.
Although the idea is reasonable, it is not such an easy task to figure out what foods might cause allergic reactions that could lead to ADHD symptoms. Some proponents of elimination diets have proposed eliminating a single food, others include multiple foods, and some go as far as to allow only a few foods to be eaten to avoid all potential allergies. Most readers will wonder if such restrictive diets, even if they did work, are feasible. That is certainly a concern for very restrictive diets.
Perhaps the most well-known ADHD diet is the Feingold diet(named after its creator). This diet eliminates artificial food colorings and preservatives that have become so common in the western diet. Some have claimed that the increasing use of colorings and preservatives explains why the prevalence of ADHD is greater in Western countries and has been increasing over time. But those people have it wrong. The prevalence of ADHD is similar around the world and has not been increasing over time. That has been well documented but details must wait for another blog.
The Feingold and other elimination diets have been studied by meta-analysis. This means that someone analyzed several well-controlled trials published by other people. Passing the test of meta-analysis is the strongest test of any treatment effect. When this test is applied to the best studies available, there is evidence that the exclusion of fool colorings helps reduce ADHD symptoms. But more restrictive diets are not effective. So removing artificial food colors seems like a good idea that will help reduce ADHD symptoms. But although such diets ‘work’, they do network very well. On a scale of one to 10where 10 is the best effect, drug therapy scores 9 to 10 but eliminating food colorings scores only 3 or 4. Some patients or parents of patients might want this diet change first in the hopes that it will work well for them. That is a possibility, but if that is your choice, you should not delay the more effective drug treatments for too long in the likely event that eliminating food colorings is not sufficient. You can learn more about elimination diets from Nigg, J. T., and K.Holton (2014). "Restriction and elimination diets in ADHD treatment."Child Adolesc Psychiatr Clin N Am 23(4): 937-953.
Keep in mind that the treatment guidelines from professional organizations point to ADHD drugs as the first-line treatment for ADHD. The only exception is for preschool children where medication is only the first-line treatment for severe ADHD; the guidelines recommend that other preschoolers with ADHD be treated with non-pharmacologic treatments, when available. You can learn more about non-pharmacologic treatments for ADHD from a book I recently edited: Faraone, S. V. &Antshel, K. M. (2014). ADHD: Non-Pharmacologic Interventions. Child AdolescPsychiatr Clin N Am 23, xiii-xiv.
According to Vox, "Homeopathy is a $1.2 billion industry in the US alone, used by an estimated 5 million adults and 1 million kids. It's become such a staple of America's wellness industry that leading brands such as Boiron and Hyland's are readily available at high-end health-focused chains like Whole Foods and sprouts, supermarkets like Ralph's, and superstores such as Walmart."
Yet, this highly profitable "wellness" industry has shown little to no interest in supporting randomized clinical trials (RCTs) to test the efficacy and safety of its products.
In a team of Italian physicians, Rana comprehensive search of the medical literature and found only nine RCTs exploring the efficacy and safety of homeopathic remedies for psychiatric disorders that met the selection criteria.
Only two of these RCTs addressed efficacy for ADHD, with a combined 99 participants. Neither reported any significant effect.
Combining them into a small meta-analysis likewise found no significant effect.
But that's not all. According to the study authors, "The paucity of published trials does not allow a reliable estimate of publication bias, which would require a larger number of studies. This is a major issue since it has been reported that, among completed trials of homeopathy registered on ClinicalTrials.gov, only 46% were published within 2 years of completion, and among these, 25% altered or changed their primary outcomes. It is, therefore, possible that the results of the present meta-analysis are distorted because of selective publication."
The authors conclude, "The most surprising result of this meta-analysis is the paucity of available data from RCTs," and "Based on the very few available trials, homeopathy did not produce any relevant effect on symptoms of ADHD ... Ethical considerations should therefore prevent clinicians from recommending HRs [homeopathic remedies], which have a cost either for patients or for health care systems, until when a sufficient amount of solid evidence becomes available."
Several meta-analyses have assessed this question by computing the Standardized Mean Difference or SMD statistic. The SMD is a measure that allows us to compare different studies. For context, the effect of stimulant medication for treating ADHD is about 0.9. SMDs less than 0.3 are considered low, between 0.3 to 0.6 medium, and anything greater than high.
A 2004 meta-analysis combined the results of fifteen studies with a total of 219 participants and found a small association(SMD = .28, 95% CI .08-.49) between consumption of artificial food colors by children and increased hyperactivity. Excluding the smallest and lowest quality studies further reduced the SMD to .21, and a lower confidence limit of .007 also made it barely statistically significant. Publication bias was indicated by an asymmetric funnel plot. No effort was made to correct the bias.
A 2012 meta-analysis by Nigg et al. combined twenty studies with a total of 794 participants and again found a small effect size (SMD =.18, 95% CI .08-.29). It likewise found evidence of publication bias. Correcting for the bias led to a tiny effect size at the outer margin of statistical significance (SMD = .12, 95% CI .01-.23). Restricting the pool to eleven high-quality studies with 619 participants led to a similarly tiny effect size that fell just outside the 95% confidence interval (SMD = .13, CI =0-.25, p = .053). The authors concluded, "Overall, a mixed conclusion must be drawn. Although the evidence is too weak to justify action recommendations absent a strong precautionary stance, it is too substantial to dismiss."
In 2013 a European ADHD Guidelines Group consisting of 21 researchers (Sonuga-Barke et al.) performed a systematic review and meta-analysis that examined the efficacy of excluding artificial colors from the diets of children and adolescents as a treatment for ADHD. While many interventions showed benefits in unblinded assessments, only artificial food color exclusion and, to a lesser extent, free fatty acid supplementation remained effective under blinded conditions. The findings suggest that eliminating artificial food dyes may meaningfully reduce ADHD symptoms in some children, though it should be noted that the positive results were mostly seen in children with other food sensitivities.
The research to date does suggest a small effect of artificial food colors in aggravating symptoms of hyperactivity in children, and a potential beneficial effect of excluding these substances from the diets of children and adolescents, but the evidence is not very robust. More studies with greater numbers of participants, and better control for the effects of ADHD medications, will be required for a more definitive finding.
In the meantime, given that artificial food colors are not an essential part of the diet, parents could consider excluding them from their children's meals, since doing so is risk-free, and the cost (reading labels) is negligible.
Today, most treatment guidelines recommend starting ADHD treatment with stimulant medications. These medicines often work quickly and can be very effective, but they do not help every child, and they can have bothersome side effects, such as appetite loss, sleep problems, or mood changes. Families also worry about long-term effects, the possibility of misuse or abuse, as well as the recent nationwide stimulant shortages. Non-stimulant medications are available, but they are usually used only after stimulants have not been effective.
This stimulant-first approach means that many patients who would respond well to a non-stimulant will end up on a stimulant medication anyway. This study addresses this issue by testing two different ways of starting medication treatment for school-age children with attention-deficit/hyperactivity disorder (ADHD). We want to know whether beginning with a non-stimulant medicine can work as well as the “stimulant-first” approach, which is currently used by most prescribers.
From this study, we hope to learn:
Our goal is to give families and clinicians clear, practical evidence to support a truly shared decision: “Given this specific child, should we start with a stimulant or a non-stimulant?”
Who will be in the study?
We will enroll about 1,000 children and adolescents, ages 6 to 16, who:
We will include children with common co-occurring conditions (such as anxiety, depression, learning or developmental disorders) so that the results reflect the “real-world” children seen in clinics, not just highly selected research volunteers.
How will the treatments be assigned?
This is a randomized comparative effectiveness trial, which means:
Parents and clinicians will know which type of medicine the child is taking, as in usual care. However, the experts who rate how much each child has improved using our main outcome measure will not be told which treatment strategy the child received. This helps keep their ratings unbiased.
What will participants be asked to do?
Each family will be followed for 12 months. We will collect information at:
At these times:
We will also track:
Data will be entered into a secure, HIPAA-compliant research database. Study staff at each site will work closely with families to make participation as convenient as possible, including offering flexible visit schedules and electronic options for completing forms when feasible.
How will we analyze the results?
Using standard statistical methods, we will:
All analyses will follow the “intention-to-treat” principle, meaning we compare children based on the strategy they were originally assigned to, even if their medication is later changed. This mirrors real-world decision-making: once you choose a starting strategy, what tends to happen over time?
Why is this study necessary now?
This study addresses a critical, timely gap in ADHD care:
In short, this study is needed now to move ADHD medication decisions beyond “one-size-fits-all.” By rigorously comparing stimulant-first and non-stimulant-first strategies in real-world settings, and by focusing on what matters most to children and families overall functioning, side effects, and long-term well-being, we aim to give patients, parents, and clinicians the information they need to choose the best starting treatment for each child.
This project was conceived by Professor Stephen V. Faraone, PhD (SUNY Upstate Medical University, Department of Psychiatry, Syracuse, NY) and Professor Jeffrey H. Newcorn, MD (Icahn School of Medicine at Mount Sinai, Department of Psychiatry, New York, NY). It will be conducted at nine sites across the USA.
EBI-ADHD:
If you live with ADHD, treat ADHD, or write about ADHD, you’ve probably run into the same problem: there’s a ton of research on treatments, but it’s scattered across hundreds of papers that don’t talk to each other. The EBI-ADHD website fixes that.
EBI-ADHD (Evidence-Based Interventions for ADHD) is a free, interactive platform that pulls together the best available research on how ADHD treatments work and how safe they are. It’s built for clinicians, people with ADHD and their families, and guideline developers who need clear, comparable information rather than a pile of PDFs. EBI-ADHD Database The site is powered by 200+ meta-analyses covering 50,000+ participants and more than 30 different interventions. These include medications, psychological therapies, brain-stimulation approaches, and lifestyle or “complementary” options.
The heart of the site is an interactive dashboard. You can:
The dashboard then shows an evidence matrix: a table where each cell is a specific treatment–outcome–time-point combination. Each cell tells you two things at a glance:
Clicking a cell opens more detail: effect sizes, the underlying meta-analysis, and how the certainty rating was decided.
EBI-ADHD is not just a curated list of papers. It’s built on a formal umbrella review of ADHD interventions, published in The BMJ in 2025. That review re-analyzed 221 meta-analyses using a standardized statistical pipeline and rating system.
The platform was co-created with 100+ clinicians and 100+ people with lived ADHD experience from around 30 countries and follows the broader U-REACH framework for turning complex evidence into accessible digital tools.
Why it Matters
ADHD is one of the most studied conditions in mental health, yet decisions in everyday practice are still often driven by habit, marketing, or selective reading of the literature. EBI-ADHD offers something different: a transparent, continuously updated map of what we actually know about ADHD treatments and how sure we are about it.
In short, it’s a tool to move conversations about ADHD care from “I heard this works” to “Here’s what the best current evidence shows, and let’s decide together what matters most for you.”
The Background:
Meta-analyses have previously suggested a link between maternal thyroid dysfunction and neurodevelopmental disorders (NDDs) in children, though some studies report no significant difference. Overweight and obesity are more common in children and adolescents with NDDs. Hypothyroidism is often associated with obesity, which may result from reduced energy expenditure or disrupted hormone signaling affecting growth and appetite. These hormone-related parameters could potentially serve as biomarkers for NDDs; however, research findings on these indicators vary.
The Study:
A Chinese research group recently released a meta-analysis examining the relationship between neurodevelopmental disorders (NDDs) and hormone levels – including thyroid, growth, and appetite hormones – in children and adolescents.
The analysis included peer-reviewed studies that compared hormone levels – such as thyroid hormones (FT3, FT4, TT3, TT4, TSH, TPO-Ab, or TG-Ab), growth hormones (IGF-1 or IGFBP-3), and appetite-related hormones (leptin, ghrelin, or adiponectin) – in children and adolescents with NDDs like ADHD, against matched healthy controls. To be included, NDD cases had to be first-diagnosis and medication-free, or have stopped medication before testing. Hormone measurements needed to come from blood, urine, or cerebrospinal fluid samples, and all studies were required to provide both means and standard deviations for these measurements.
Meta-analysis of nine studies encompassing over 5,700 participants reported a medium effect size increase in free triiodothyronine (FT3) in children and adolescents with ADHD relative to healthy controls. There was no indication of publication bias, but variation between individual study outcomes (heterogeneity) was very high. Further analysis showed FT3 was only significantly elevated in the predominantly inattentive form of ADHD (three studies), again with medium effect size, but not in the hyperactive/impulsive and combined forms.
Meta-analysis of two studies combining more than 4,800 participants found a small effect size increase in thyroid peroxidase antibody (TPO-Ab) in children and adolescents with ADHD relative to healthy controls. In this case, the two studies had consistent results. Because only two studies were involved, there was no way to evaluate publication bias.
The remaining thyroid hormone meta-analyses, involving 6 to 18 studies and over 5,000 participants in each instance, found no significant differences in levels between children and adolescents with ADHD and healthy controls.
Meta-analyses of six studies with 317 participants and two studies with 192 participants found no significant differences in growth hormone levels between children and adolescents with ADHD and healthy controls.
Finally, meta-analyses of nine studies with 333 participants, five studies with 311 participants, and three studies with 143 participants found no significant differences in appetite-related hormone levels between children and adolescents with ADHD and healthy controls.
The Conclusion:
The team concluded that FT3 and TPO-Ab might be useful biomarkers for predicting ADHD in youth. However, since FT3 was only linked to inattentive ADHD, and TPO-Ab’s evidence came from just two studies with small effects, this conclusion may overstate the meta-analysis results.
Our Take-Away:
Overall, this meta-analysis found only limited evidence that hormone differences are linked to ADHD. One thyroid hormone (FT3) was higher in children with ADHD—mainly in the inattentive presentation—but the findings varied widely across studies. Another marker, TPO-Ab, showed a small increase, but this came from only two studies, making the result less certain. For all other thyroid, growth, and appetite-related hormones, the researchers found no meaningful differences between children with ADHD and those without. While FT3 and TPO-Ab may be worth exploring in future research, the current evidence is not strong enough to consider them reliable biomarkers.
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. More Info
By clicking, you agree to store cookies on your device to enhance navigation, analyze usage, and support marketing. More Info