June 18, 2021

How can women best manage ADHD during pregnancy to minimize risk to their babies?

Roughly one in thirty adult women have ADHD. Research results indicate that psychostimulants (methylphenidate and amphetamines) offer the most effective course of treatment in most instances. But during pregnancy, such treatment also exposes the fetus to these drugs. Several studies have set out to determine whether such exposure is harmful.

The largest comparison was 5,571 infants exposed to amphetamines and 2,072 exposed to methylphenidate with unexposed infants. It found no increased risks for adverse outcomes due to amphetamine or methylphenidate exposures. Another study studied 3,331 infants exposed to amphetamines, 1,515 exposed to methylphenidate, and 453 to atomoxetine. Comparing these infants to unexposed infants, it found a slightly increased risk of preeclampsia, with an adjusted risk ratio of 1.29 (95% CI 1.11-1.49), but no statistically significant effect for placental abruption, small gestational age, and preterm birth. When assessing the two stimulants, amphetamine, and methylphenidate, together, it found a small increased risk of preterm birth, with an adjusted risk ratio of 1.3 (95% CI 1.10-1.55). There was a statistically significant effect for preeclampsia, placental abruption, or small gestational age. Atomoxetine use was free of any indication of increased risk.

Another study involving 1,591 infants exposed to ADHD medication (mostly methylphenidate) during pregnancy, reported increased risks associated with exposure. The adjusted odds ratio for admission to a neonatal intensive care unit was 1.5 (95% CI 1.3-1.7), and for the central nervous system, disorders were 1.9 (95% CI 1.1-3.1). There was no increased risk for congenital malformations or perinatal death.

Six studies focused on methylphenidate exposure. Two, with a combined total of 402 exposed infants, found no increased risk for malformations. Another, with 208 exposed infants, found a slightly greater risk of cardiovascular malformations, but it was not statistically significant. A fourth, with 186 exposed infants, found no increased risk of malformations but did find a higher rate of miscarriage, with an adjusted hazard ratio of 1.98(95% CI 1.23-3.20). A fifth, with 480 exposed infants, also found a higher rate of miscarriage, with an odds ratio of 2.07 (95% CI 1.51-2.84). But although the sixth, with 382 exposed infants, likewise found an increased risk of miscarriage (adjusted relative risk 1.55 with 95% CI1.03-2.06), it also found an identical risk for women with ADHD who were not on medication during their pregnancies (adjusted relative risk 1.56with 95% CI 1.11-2.20). That finding suggests that all women with ADHD have a higher risk of miscarriage, and that methylphenidate exposure is not the causal factor.

Summing up, while some studies have shown increased adverse effects among infants exposed to maternal ADHD medications, most have not. There are indications that higher rates of miscarriage are associated with maternal ADHD rather than fetal exposure to psychostimulant medications. One study did find a small increased risk of central nervous system disorders and admission to a neonatal intensive care unit. But, again, we do not know whether that was due to exposure to psychostimulant medication or associated with maternal ADHD. If there is a risk, it appears to be a small one.

The question then becomes how to balance that as yet uncertain risk against the disadvantage of discontinuing the effective psychostimulant medication. As the authors of this review conclude. It [ADHD] is associated with significant psychiatric comorbidities for women, including depression, anxiety, substance use disorders, driving safety impairment, and occupational impairment. The gold standard treatment includes behavioral therapy and stimulant medication, namely methylphenidate and amphetamine derivatives. Psychostimulant use during pregnancy continues to increase and has been associated with a small increased relative risk of a range of obstetric concerns. However, the absolute increases in risks are small, and many of the best studies to date are confounded by other medication use and medical comorbidities.

Thus, women with moderate-to-severe ADHD should not necessarily be counseled to suspend their ADHD treatment based on these findings. They advise that when functional impairment from ADHD is moderate to severe, the benefits of stimulant medications may outweigh the small known and unknown risks of medication exposure, and that "If a decision is made to take ADHD medication, women should be informed of the known risks and benefits of the medication use in pregnancy, and take the lowest therapeutic dose possible."

Allison S. Baker, Marlene P. Freeman, "Management of Attention Deficit Hyperactivity Disorder During Pregnancy," Obstetrics and Gynecology Clinics of North America, vol. 45, issue 3 (2018), 495-509.

Related posts

No items found.

News Tuesday: Integrating Cognition and Eye Movement

Integrating Cognitive Factors and Eye Movement Data in Reading Predictive Models for Children with Dyslexia and ADHD-I

In a recent study, researchers delved into the complex interplay of cognitive processes and eye movements in children with dyslexia and Attention-Deficit/Hyperactivity Disorder. Their findings shed light on predictive models for reading outcomes in these children compared to typical readers.

The study involved 59 children: 19 typical readers, 21 with ADHD, and 19 with developmental dyslexia (DD), all in the 4th grade and around 9 years old on average. Each group underwent thorough neuropsychological and linguistic assessments to understand their psycholinguistic profiles.

During the study, participants engaged in a silent reading task where the text underwent lexical manipulation. Researchers then analyzed eye movement data alongside cognitive factors like memory, attention, and visual processes.

Using multinomial logistic regression, the researchers evaluated predictive models based on three key measures: a linguistic model focusing on phonological awareness, rapid naming, and reading fluency; a cognitive neuropsychological model incorporating memory, attention, and visual processes; and an additive model combining lexical word properties with eye-tracking data, specifically examining word frequency and length effects.

By integrating eye movement data with cognitive factors, the researchers enhanced their ability to predict the development of dyslexia or ADHD, in comparison to typically developing readers. This approach significantly improved the accuracy of predicting reading outcomes in children with learning disabilities.

These findings have profound implications for understanding and addressing reading challenges in children. By considering both cognitive processes and eye movement patterns, educators and clinicians can develop more effective interventions tailored to the specific needs of children with dyslexia and ADHD.

April 30, 2024

Exploring Gut Microbiota and Diet in Autism and ADHD: What Does the Research Say?


In recent years, there has been growing interest in understanding the connection between our gut microbiota (the community of microorganisms in our digestive system) and various neurodevelopmental disorders like autism spectrum disorder (ASD) and attention-deficit hyperactivity disorder (ADHD). A new study by Shunya Kurokawa and colleagues dives deeper into this area, comparing dietary diversity and gut microbial diversity among children with ASD, ADHD, their normally-developing siblings, and unrelated volunteer controls. Let's unpack what they found and what it means.

The Study Setup

The researchers recruited children aged 6-12 years diagnosed with ASD and/or ADHD, along with their non-ASD/ADHD siblings and the unrelated non-ASD/ADHD volunteers. The diagnoses were confirmed using standardized assessments like the Autism Diagnostic Observation Schedule-2 (ADOS-2). The study looked at gut microbial diversity using advanced DNA extraction and sequencing techniques, comparing alpha-diversity indices (which reflect the variety and evenness of microbial species within each gut sample) across different groups. They also assessed dietary diversity through standardized questionnaires.

Key Findings

The study included 98 subjects, comprising children with ASD, ADHD, both ASD and ADHD, their non-ASD/ADHD siblings, and the unrelated controls. Here's what they discovered:

Gut Microbial Diversity: The researchers found significant differences in alpha-diversity indices (like Chao 1 and Shannon index) among the groups. Notably, children with ASD had lower gut microbial diversity compared to unrelated neurotypical controls. This suggests disorder-specific differences in gut microbiota, particularly in children with ASD.

Dietary Diversity: Surprisingly, dietary diversity (assessed using the Shannon index) did not differ significantly among the groups. This finding implies that while gut microbial diversity showed disorder-specific patterns, diet diversity itself might not be the primary factor driving these differences.

What Does This Mean?

The study highlights intriguing connections between gut microbiota and neurodevelopmental disorders like ASD and ADHD. The lower gut microbial diversity observed in children with ASD points towards potential links between gut health and the pathophysiology of ASD. Understanding these connections is crucial for developing targeted therapeutic interventions.

Implications and Future Directions

This research underscores the importance of considering gut microbiota in the context of neurodevelopmental disorders. Moving forward, future studies should account for factors like co-occurrence of ASD and ADHD, as well as carefully control for dietary influences. This will help unravel the complex interplay between gut microbiota, diet, and neurodevelopmental disorders, paving the way for innovative treatments and interventions.

In summary, studies like this shed light on the intricate relationship between our gut health, diet, and brain function. By unraveling these connections, researchers are opening new avenues for understanding and potentially treating conditions like ASD and ADHD.

April 9, 2024

Swedish Population Study Confirms Association Between ADHD and Height

Nationwide population study in Sweden confirms association between ADHD and shorter height in children and adolescents, suggests stimulant medications are not a factor

A commonly reported risk associated with ADHD medication is reduced growth in height. But studies to date have generally not adequately described or measured possible confounders, such as genetic factors, prenatal factors, or socioeconomic factors. What if ADHD were associated with reduced height even in the absence of medications? 

An international study team explored this question by performing a nationwide population study comparing data from before (1968-1991) and after (1992-2020) the adoption of stimulant therapy for ADHD in Sweden. 

The country’s single-payer health insurance system that connects patient records with all other national registers through unique personal identification numbers makes such analysis possible. Sweden also has military service conscription, which records the heights of 18-year-old males.

The participants were all 14,268 Swedish males with a diagnosis of ADHD who were drafted into military service at any time from 1968 through 2020. 

Up to five non-ADHD controls were identified for each ADHD case, matched by sex (they had to be male), birth year, and county. The total number of controls was 71,339.

Among 34,586 participants in the period before adoption of stimulant medications (1968-1991), those diagnosed with ADHD had roughly 30% greater odds of being shorter than normal (166-172 vs. 173-185 cm) than typically developing controls. That dropped to 20% greater odds among the 34,714 participants in the cohort following adoption of stimulant medications.

The odds of those diagnosed with ADHD being much shorter than normal (150-165 vs. 173-185 cm) remained identical (about 55% greater) among the almost 30,000 participants in both cohorts.

In other words, there was no increase in the odds of ADHD individuals being shorter than normal after adoption of stimulant therapy in Sweden compared with before such adoption.

Furthermore, after adjusting for known confounders, including birth weight, inflammatory bowel disease, celiac disease, hypothyroidism, anxiety disorders, depression, substance use disorder, and highest parental education, the odds of those diagnosed with ADHD being shorter than normal or much shorter than normal in the 1992-2020 cohort dropped to roughly 10% and 30% greater, respectively.

Could it be the disorder itself rather than stimulant treatment that is associated with reduced height in individuals diagnosed with ADHD?

To address effects of environmental and familial/genetic confounding, the team then compared the entire cohort of males diagnosed with ADHD from 1968 through 2020 with typically developing male relatives, ranging from first cousins to full siblings.

Among full siblings, the odds of those with ADHD diagnoses being shorter (over 90,000 participants) or much shorter (over 77,000 participants) were a statistically significant 14% and 18%, respectively.

The authors concluded, “Our findings suggest that ADHD is associated with shorter height. On a population level, this association was present both before and after ADHD-medications were available in Sweden. The association between ADHD and height was partly explained by prenatal factors, psychiatric comorbidity, low SES [socioeconomic status] and a shared familial liability for ADHD.”

January 9, 2024