November 1, 2021

Two nationwide population studies on opposite sides of the world confirm links between autoimmune diseases and ADHD, suggest they are from genetic co-aggregation

Both Taiwan and Sweden have universal single-payer health insurance systems that in effect track their entire national populations. With detailed health and other records on millions of individuals, with no significant exclusions, one can essentially eliminate sampling error, and also explore how associations vary by degree of familial/genetic relationship.

A Taiwanese research team used the Taiwan National Health Insurance Research Database to follow 708,517 family triads (father-mother-child) from 2001 through 2011. That's a total of over 2.1 million persons. The database covers over 99% of Taiwan's population.

Noting that previous studies had found links between maternal autoimmune diseases and ADHD in their offspring and that research on associations with paternal autoimmune diseases had been inconclusive, they were particularly interested in exploring the latter.

Children born from 2001 through 2008 were enrolled in the study. The investigators then noted the presence or absence of any autoimmune disease in their parents from 1996 through childbirth.

In Taiwan, expert panels review diagnostic information of severe systemic autoimmune diseases to confirm the diagnosis. Once confirmed, patient co-payments are waived. ADHD diagnoses are by board-certified psychiatrists.

To reduce the effect of confounding variables, adjustments were made for family demographic data (income level and residence), parental ages, parental mental disorders, and sex of children.

The presence of any maternal autoimmune diseases was associated with a 60% greater risk of ADHD in offspring. The risk was especially elevated for inflammatory bowel diseases (2.4 times the risk) and ankylosing spondylitis (twice the risk).

The presence of any paternal autoimmune diseases was also associated with an elevated risk of ADHD in offspring, although only about half as much as for maternal autoimmune diseases, with a 33% greater risk overall. The association was especially pronounced for psoriasis and ankylosing spondylitis, both doubling the risk of ADHD in offspring.

Meanwhile, half a world away, a joint Swedish, Norwegian, and U.S. team used the Swedish national registries to dig further into these associations. They did this by examining data not only from mothers and fathers, but from full siblings, aunts, uncles, and cousins as well, to probe genetic links.

The team used the Swedish registers to identify 5,178,225 individuals born in Sweden between 1960 and 2010 for whom the identity of the biological mother was known, excluding all who died or emigrated before age 10. They then used the registers to identify the aforementioned relatives.

The researchers only included autoimmune diseases with at least two thousand diagnosed individuals in the cohort, to avoid small sample effects.

They adjusted for sex and year of birth, but not "for another covariate that is often adjusted for (e.g. maternal education, family income, parental psychiatric disorder, parental AD [autoimmune disease] as these are likely not true confounders of the association between ADHD and ADD, but may rather represent either mediator between ADHD and AD's, or proxies of ADHD and/or AD risk or alternatively proxies for the associations we aim to measure."

The team found statistically significant associations between ADHD and autoimmune diseases in all categories of relatives. Mothers of children with ADHD were 29% more likely to have an autoimmune disease than those of typically developing children; fathers were 14% more likely to have an autoimmune disease; full siblings 19% more likely; aunts 12% more likely; uncles 7% more likely; and cousins 4% more likely.

Quantitative genetic modeling produced a significant genetic correlation, but no significant environmental correlation. Genetic correlation explained most, if not all, the covariance between ADHD and any autoimmune disease.

The authors concluded, "ADHD was to some degree more strongly associated with maternal than paternal AD's, but by using aunts and uncles in a genetically informative study design, we demonstrate that this difference cannot be readily explained by AD-mediated maternal effects. Quantitative genetic modeling further indicates that the familial co-aggregation of ADHD and ADs is partly due to shared genetic factors. In addition, biological aunts, uncles, and cousins must be assumed to share the little environment with the index individuals, in further support of shared genetic factors underlying the familial co-aggregation. Moreover, both epidemiological and molecular genetics studies have demonstrated positive genetic correlations between ADHD and ADs, in agreement with our findings."

The authors emphasize that these results do not warrant screening for autoimmune diseases among asymptomatic individuals with ADHD.

Tor-Arne Hegvik, Qi Chen, Ralf Kuja-Halkola, Kari Klungsøyr, Agnieszka Butwicka, Paul Lichtenstein, Catarina Almqvist, Stephen V Faraone, Jan Haavik, Henrik Larsson. "Familial co-aggregation of attention-deficit/hyperactivity disorder and autoimmune diseases: a cohort study based on Swedish population-wide registers," International Journal of epidemiology (2021), published online, https://doi.org/10.1093/ije/dyab151.

Hsuan Lee, Ju-Wei Hsu, Shih-Jen Tsai, Kai-Lin Huang, Ya-MeiBai, Tung-Png Su, Tzeng-Ji Chen, Mu-Hong Chen, "Risk of attention deficit hyperactivity and autism spectrum disorders among the children of parents with autoimmune diseases: a nationwide birth cohort study," European Child &Adolescent Psychiatry (2021), published online, https://doi.org/10.1007/s00787-021-01860-0.

Related posts

No items found.

News Tuesday: Integrating Cognition and Eye Movement

Integrating Cognitive Factors and Eye Movement Data in Reading Predictive Models for Children with Dyslexia and ADHD-I

In a recent study, researchers delved into the complex interplay of cognitive processes and eye movements in children with dyslexia and Attention-Deficit/Hyperactivity Disorder. Their findings shed light on predictive models for reading outcomes in these children compared to typical readers.

The study involved 59 children: 19 typical readers, 21 with ADHD, and 19 with developmental dyslexia (DD), all in the 4th grade and around 9 years old on average. Each group underwent thorough neuropsychological and linguistic assessments to understand their psycholinguistic profiles.

During the study, participants engaged in a silent reading task where the text underwent lexical manipulation. Researchers then analyzed eye movement data alongside cognitive factors like memory, attention, and visual processes.

Using multinomial logistic regression, the researchers evaluated predictive models based on three key measures: a linguistic model focusing on phonological awareness, rapid naming, and reading fluency; a cognitive neuropsychological model incorporating memory, attention, and visual processes; and an additive model combining lexical word properties with eye-tracking data, specifically examining word frequency and length effects.

By integrating eye movement data with cognitive factors, the researchers enhanced their ability to predict the development of dyslexia or ADHD, in comparison to typically developing readers. This approach significantly improved the accuracy of predicting reading outcomes in children with learning disabilities.

These findings have profound implications for understanding and addressing reading challenges in children. By considering both cognitive processes and eye movement patterns, educators and clinicians can develop more effective interventions tailored to the specific needs of children with dyslexia and ADHD.

April 30, 2024

Exploring Gut Microbiota and Diet in Autism and ADHD: What Does the Research Say?


In recent years, there has been growing interest in understanding the connection between our gut microbiota (the community of microorganisms in our digestive system) and various neurodevelopmental disorders like autism spectrum disorder (ASD) and attention-deficit hyperactivity disorder (ADHD). A new study by Shunya Kurokawa and colleagues dives deeper into this area, comparing dietary diversity and gut microbial diversity among children with ASD, ADHD, their normally-developing siblings, and unrelated volunteer controls. Let's unpack what they found and what it means.

The Study Setup

The researchers recruited children aged 6-12 years diagnosed with ASD and/or ADHD, along with their non-ASD/ADHD siblings and the unrelated non-ASD/ADHD volunteers. The diagnoses were confirmed using standardized assessments like the Autism Diagnostic Observation Schedule-2 (ADOS-2). The study looked at gut microbial diversity using advanced DNA extraction and sequencing techniques, comparing alpha-diversity indices (which reflect the variety and evenness of microbial species within each gut sample) across different groups. They also assessed dietary diversity through standardized questionnaires.

Key Findings

The study included 98 subjects, comprising children with ASD, ADHD, both ASD and ADHD, their non-ASD/ADHD siblings, and the unrelated controls. Here's what they discovered:

Gut Microbial Diversity: The researchers found significant differences in alpha-diversity indices (like Chao 1 and Shannon index) among the groups. Notably, children with ASD had lower gut microbial diversity compared to unrelated neurotypical controls. This suggests disorder-specific differences in gut microbiota, particularly in children with ASD.

Dietary Diversity: Surprisingly, dietary diversity (assessed using the Shannon index) did not differ significantly among the groups. This finding implies that while gut microbial diversity showed disorder-specific patterns, diet diversity itself might not be the primary factor driving these differences.

What Does This Mean?

The study highlights intriguing connections between gut microbiota and neurodevelopmental disorders like ASD and ADHD. The lower gut microbial diversity observed in children with ASD points towards potential links between gut health and the pathophysiology of ASD. Understanding these connections is crucial for developing targeted therapeutic interventions.

Implications and Future Directions

This research underscores the importance of considering gut microbiota in the context of neurodevelopmental disorders. Moving forward, future studies should account for factors like co-occurrence of ASD and ADHD, as well as carefully control for dietary influences. This will help unravel the complex interplay between gut microbiota, diet, and neurodevelopmental disorders, paving the way for innovative treatments and interventions.

In summary, studies like this shed light on the intricate relationship between our gut health, diet, and brain function. By unraveling these connections, researchers are opening new avenues for understanding and potentially treating conditions like ASD and ADHD.

April 9, 2024

Swedish Population Study Confirms Association Between ADHD and Height

Nationwide population study in Sweden confirms association between ADHD and shorter height in children and adolescents, suggests stimulant medications are not a factor

A commonly reported risk associated with ADHD medication is reduced growth in height. But studies to date have generally not adequately described or measured possible confounders, such as genetic factors, prenatal factors, or socioeconomic factors. What if ADHD were associated with reduced height even in the absence of medications? 

An international study team explored this question by performing a nationwide population study comparing data from before (1968-1991) and after (1992-2020) the adoption of stimulant therapy for ADHD in Sweden. 

The country’s single-payer health insurance system that connects patient records with all other national registers through unique personal identification numbers makes such analysis possible. Sweden also has military service conscription, which records the heights of 18-year-old males.

The participants were all 14,268 Swedish males with a diagnosis of ADHD who were drafted into military service at any time from 1968 through 2020. 

Up to five non-ADHD controls were identified for each ADHD case, matched by sex (they had to be male), birth year, and county. The total number of controls was 71,339.

Among 34,586 participants in the period before adoption of stimulant medications (1968-1991), those diagnosed with ADHD had roughly 30% greater odds of being shorter than normal (166-172 vs. 173-185 cm) than typically developing controls. That dropped to 20% greater odds among the 34,714 participants in the cohort following adoption of stimulant medications.

The odds of those diagnosed with ADHD being much shorter than normal (150-165 vs. 173-185 cm) remained identical (about 55% greater) among the almost 30,000 participants in both cohorts.

In other words, there was no increase in the odds of ADHD individuals being shorter than normal after adoption of stimulant therapy in Sweden compared with before such adoption.

Furthermore, after adjusting for known confounders, including birth weight, inflammatory bowel disease, celiac disease, hypothyroidism, anxiety disorders, depression, substance use disorder, and highest parental education, the odds of those diagnosed with ADHD being shorter than normal or much shorter than normal in the 1992-2020 cohort dropped to roughly 10% and 30% greater, respectively.

Could it be the disorder itself rather than stimulant treatment that is associated with reduced height in individuals diagnosed with ADHD?

To address effects of environmental and familial/genetic confounding, the team then compared the entire cohort of males diagnosed with ADHD from 1968 through 2020 with typically developing male relatives, ranging from first cousins to full siblings.

Among full siblings, the odds of those with ADHD diagnoses being shorter (over 90,000 participants) or much shorter (over 77,000 participants) were a statistically significant 14% and 18%, respectively.

The authors concluded, “Our findings suggest that ADHD is associated with shorter height. On a population level, this association was present both before and after ADHD-medications were available in Sweden. The association between ADHD and height was partly explained by prenatal factors, psychiatric comorbidity, low SES [socioeconomic status] and a shared familial liability for ADHD.”

January 9, 2024