Cookie Preferences
By clicking, you agree to store cookies on your device to enhance navigation, analyze usage, and support marketing. More Info
Thank you! Your submission has been received!
Oops! Something went wrong while submitting the form.
January 29, 2024

Recognizing whether your ADHD is being managed appropriately requires an understanding of what constitutes effective treatment. Here are some indicators of proper ADHD treatment:
Comprehensive Evaluation: An appropriate diagnosis of ADHD involves a comprehensive evaluation, including medical history, clinical interviews, and assessment tools. It should also exclude other conditions that may mimic ADHD.
Clear Communication: Your doctor should provide a clear explanation of ADHD, its symptoms, treatment options, potential side effects, and expected outcomes. They should answer your questions patiently and help dispel any misconceptions.
Individualized Treatment Plan: ADHD treatment often involves a combination of medication, psychotherapy, and lifestyle changes. Your doctor should tailor the treatment plan to your specific needs, symptoms, and life circumstances.
Medication Management: If medication is part of your treatment plan, your doctor should monitor its effects and side effects closely, adjusting the dosage as necessary. Remember, the aim is to maximize benefits and minimize side effects. Much research shows that it is usually best to start treatment with an FDA approved medication. If your doctor decides otherwise, you should ask why.
Psychotherapy and Coaching: Pills don’t provide skills. Many adults with ADHD never acquired life skills due to untreated ADHD. Cognitive-behavioral therapy (CBT) is beneficial for managing ADHD. Your doctor might recommend this and refer you to a psychologist, or they might provide some elements of these services themselves.
Regular Follow-Ups: Regular follow-ups are critical to assess the effectiveness of the treatment plan and to make necessary adjustments. Your doctor should be tracking your progress and adapting your treatment as needed.
Empowering You: A good doctor will support you in managing your ADHD, providing education, resources, and tools that empower you to lead a healthy, fulfilling life.
Focus on Strengths: ADHD can come with strengths, such as creativity, dynamism, and the ability to think outside the box. An effective healthcare provider will help you leverage these strengths.
Involvement of Loved Ones: Depending on your circumstances, involving your loved ones in your treatment process can be beneficial. They can provide additional support and understanding.
Co-ordinating with Other Healthcare Providers: If you have other healthcare providers involved in your care, your doctor should communicate and coordinate with them to ensure consistent and comprehensive care.
Remember, you have the right to seek a second opinion if you feel your ADHD is not being appropriately managed. Trust your instincts and advocate for your health. It may also be helpful to join ADHD support groups (online or offline) to connect with others who share similar experiences. Their insights and recommendations could be beneficial. Also keep in mind that achieving an optimal outcome for one’s ADHD often requires the doctor to try a few different medications as it is not currently possible to predict which patients do best on which medications.
In our digital age, the internet serves as a powerful platform for accessing health information. Yet, with this great power comes great responsibility. Misinformation, particularly concerning ADHD (Attention-Deficit/Hyperactivity Disorder), is rife online, leading to confusion, the perpetuation of stigma, and potentially harmful consequences for those affected by the disorder and their loved ones. This blog will delve into some of these misconceptions, their impacts, and how to ensure the ADHD information you come across online is reliable, with a special emphasis on a recent study examining ADHD content on TikTok.
The Misinformation Problem
ADHD is a neurodevelopmental disorder that affects both children and adults. It's characterized by patterns of inattention, impulsivity, and hyperactivity that are persistent. Despite its recognition as a well-documented medical condition, it is often misunderstood, partly due to widespread misinformation.
Common ADHD misconceptions include:
ADHD is not a real disorder: This belief is found scattered across online forums, and even some ill-informed news articles.
ADHD is a result of bad parenting: Numerous online discussions blame parents for their child's ADHD. However, research has shown that ADHD has biological origins and is not a result of parenting styles.
ADHD only affects children: Many websites and social media posts promote this myth, but ADHD can continue into adulthood.
ADHD medication leads to substance abuse: Certain posts on social media may wrongly claim that ADHD medication leads to substance abuse.
A recent study explored the quality of ADHD content on TikTok, a popular video-sharing social media platform. Researchers investigated the top 100 most popular ADHD-related videos on the platform. Shockingly, they found that 52% of these videos were classified as misleading, while only 21% were categorized as useful. The majority of these misleading videos were uploaded by non-healthcare providers.
The Impact of Misinformation
Misinformation about ADHD can have harmful impacts on individuals with the disorder and their families:
Delayed diagnosis and treatment: Misinformation can deter individuals and parents from seeking professional help, leading to delays in diagnosis and treatment.
Increased stigma: False information can amplify societal stigma about ADHD, leading to misunderstanding and discrimination.
Harmful treatment approaches: Misinformation can lead individuals to opt for ineffective or even harmful treatments.
The proliferation of misleading ADHD content on platforms like TikTok only amplifies these problems. The TikTok study found that while the videos were generally understandable, they had low actionability — meaning they offered little practical advice for managing ADHD.
Identifying Reliable Information
Given the prevalence of misinformation, it's crucial to be able to distinguish between reliable and unreliable information about ADHD. Here are some pointers:
Use reputable sources: Trustworthy information often comes from recognized health organizations, government health departments, or reputable medical institutions. Some examples are NIH, Mayo Clinic, CDC and www.ADHDevidence.org.
Be wary of fake experts: If you see info from a self-proclaimed expert, you can check to see if they are really an expert by going to www.expertscape.com. Or go to www.pubmed.gov to see if they’ve ever written anything about ADHD that has been approved by their peers.
Look for citations: Reliable sources often cite scientific research to back their claims.
Beware of sensational headlines: Clickbait headlines often oversimplify complex topics like ADHD.
Consult a professional: If you're unsure about any information, consult a healthcare professional.
The TikTok study's findings underscore the importance of these guidelines, as healthcare providers tended to upload higher quality and more useful videos compared to non-healthcare providers.
In our era of digital information, the challenge of separating ADHD facts from fiction is significant but not insurmountable. By becoming discerning consumers of online information, we can help prevent the spread of misinformation, support those affected by ADHD, and foster a more informed and understanding society. It's also essential for clinicians to be aware of the extent of health misinformation online and its potential impact on patient care. This way, they can guide their patients toward reliable sources and away from misleading content.
Persons with ADHD have known to have high rates of psychiatric comorbidities. There is also growing evidence of somatic (non-psychiatric) comorbid disorders among youths with ADHD, such as metabolic syndrome (which can lead to type 2 diabetes) and chronic inflammation (such as asthma and allergic rhinitis). Much less is known, however, about comorbid conditions in adults with ADHD.
An international team of researchers looked for indicators of comorbid conditions in a nationwide cohort study using Swedish national registers. The target population was Swedish residents between the ages of 18 and 64 in 2013 and more specifically those who had been prescribed ADHD medication. They identified over 41,000 individuals who met these criteria, including over twenty thousand young adults aged 18-29 years, over sixteen thousand middle-aged adults aged 30-49 years, and over four thousand older adults aged 50-64. The remainder of the overall cohort were used as controls.
Young adults receiving ADHD medications were four times as likely to also be receiving somatic medications, and older adults were seven times as likely. The highest rate of co-medication -roughly five times more frequent than among controls - was for respiratory system medications. The second most common was for alimentary tract and metabolic system medications, with odds over four times higher than for controls. Cardiovascular system medications were the next most common, with odds among young adults receiving ADHD medications over four times those of controls, though reducing with age to being twice as common in older adults with ADHD. Patterns were similar among men and women.
Adults receiving ADHD medications were far more likely to also be receiving other psychotropic medications. Middle-aged adults were 21 times as likely to be dispensed such medications as controls, older adults eighteen times more likely, and younger adults fifteen times more likely.
For young adults prescribed ADHD medications, the most prevalent co-prescriptions were for addictive disorders, which were dispensed at over 26 times the rate for controls. For middle-aged and older adults, on the other hand, the most prevalent co-prescriptions were for antipsychotics, which were likewise dispensed at over 26 times the rate for controls. Results remained consistent for individuals who had an ADHD diagnosis in addition to an ADHD prescription.
In addition, individuals receiving ADHD medications were also on average taking more types of prescriptions, rising from 2.5 classes of medications at age 18 to five classes at age 64. For controls, the equivalent numbers were 0.9 types of medications at age 18, rising to 2.7 at age 64.
Looking at specific somatic medications prescribed, those for respiratory conditions were ones typically prescribed for asthma and allergic reactions, reinforcing a previously known association. Insulin preparations also had high rates of co-prescription, again further confirming the known association with obesity and diabetes.
On the other hand, the most commonly dispensed alimentary tract and metabolic system medications included proton pump inhibitors, typically prescribed for gastric/duodenal ulcers and gastroesophageal reflux disease. Sodium fluoride, prescribed to prevent dental caries, was also prominent. Neither of these is an established association and warrants further exploration.
Turning to psychotropic medications, the most frequent prescriptions were with drugs used to treat addictive disorders and with antipsychotics. Rates of opioid co-prescription were also notably high, a source of concern given the higher proclivity of persons with ADHD to substance use disorders.
There is strong evidence of the effectiveness of a variety of ADHD medicines in reducing ADHD symptoms. While some are more effective than others, another factor in deciding on a course of treatment is minimizing noxious side effects.
One of those side effects is a headache.
An international team of researchers from Sweden, Germany, the Netherlands, the United Kingdom, the United States, and Australia conducted a systematic review of the peer-reviewed medical literature about ADHD and headaches on the one hand, and ADHD medications and headaches on the other.
As a baseline, they performed a meta-analysis of twelve studies with a combined total of over 2.7 million participants that compared headache rates between youths with and without ADHD. Those with ADHD were twice as likely to suffer from headaches. This held even after limiting the meta-analysis to the four studies that adjusted for confounders.
Breaking down the results by type of headache revealed a fascinating distinction. There was no significant difference in rates of tension headaches, but migraines were 2.2 times as frequent among youths with ADHD.
This strong association between ADHD and migraines suggests looking for medications that are both effective and unlikely to further contribute to the odds of migraine.
Accordingly, the team examined associations between specific ADHD medications and headaches.
Stimulant medications are generally considered the most effective medications for treating ADHD. A meta-analysis of ten studies with 2,672 participants found no association between amphetamines and headaches. On the other hand, a meta-analysis of 17 studies with 3,371 participants found that methylphenidate increased the odds of headache by one-third (33%).
The non-stimulant atomoxetine is usually considered a second-tier treatment for those among whom stimulants are contraindicated. A meta-analysis of 22 studies encompassing 3,857 participants found it increased the odds of headache by 29%.
Guanfacine fared worst of the bunch. A meta-analysis of eight studies combining 1,956 participants found it increased the odds of headache by 43%.
Finally, a meta-analysis of six studies with a combined total of 818 participants found no association with headaches.
There was no indication of publication bias in any of the meta-analyses.
The Background:
Meta-analyses have previously suggested a link between maternal thyroid dysfunction and neurodevelopmental disorders (NDDs) in children, though some studies report no significant difference. Overweight and obesity are more common in children and adolescents with NDDs. Hypothyroidism is often associated with obesity, which may result from reduced energy expenditure or disrupted hormone signaling affecting growth and appetite. These hormone-related parameters could potentially serve as biomarkers for NDDs; however, research findings on these indicators vary.
The Study:
A Chinese research group recently released a meta-analysis examining the relationship between neurodevelopmental disorders (NDDs) and hormone levels – including thyroid, growth, and appetite hormones – in children and adolescents.
The analysis included peer-reviewed studies that compared hormone levels – such as thyroid hormones (FT3, FT4, TT3, TT4, TSH, TPO-Ab, or TG-Ab), growth hormones (IGF-1 or IGFBP-3), and appetite-related hormones (leptin, ghrelin, or adiponectin) – in children and adolescents with NDDs like ADHD, against matched healthy controls. To be included, NDD cases had to be first-diagnosis and medication-free, or have stopped medication before testing. Hormone measurements needed to come from blood, urine, or cerebrospinal fluid samples, and all studies were required to provide both means and standard deviations for these measurements.
Meta-analysis of nine studies encompassing over 5,700 participants reported a medium effect size increase in free triiodothyronine (FT3) in children and adolescents with ADHD relative to healthy controls. There was no indication of publication bias, but variation between individual study outcomes (heterogeneity) was very high. Further analysis showed FT3 was only significantly elevated in the predominantly inattentive form of ADHD (three studies), again with medium effect size, but not in the hyperactive/impulsive and combined forms.
Meta-analysis of two studies combining more than 4,800 participants found a small effect size increase in thyroid peroxidase antibody (TPO-Ab) in children and adolescents with ADHD relative to healthy controls. In this case, the two studies had consistent results. Because only two studies were involved, there was no way to evaluate publication bias.
The remaining thyroid hormone meta-analyses, involving 6 to 18 studies and over 5,000 participants in each instance, found no significant differences in levels between children and adolescents with ADHD and healthy controls.
Meta-analyses of six studies with 317 participants and two studies with 192 participants found no significant differences in growth hormone levels between children and adolescents with ADHD and healthy controls.
Finally, meta-analyses of nine studies with 333 participants, five studies with 311 participants, and three studies with 143 participants found no significant differences in appetite-related hormone levels between children and adolescents with ADHD and healthy controls.
The Conclusion:
The team concluded that FT3 and TPO-Ab might be useful biomarkers for predicting ADHD in youth. However, since FT3 was only linked to inattentive ADHD, and TPO-Ab’s evidence came from just two studies with small effects, this conclusion may overstate the meta-analysis results.
Our Take-Away:
Overall, this meta-analysis found only limited evidence that hormone differences are linked to ADHD. One thyroid hormone (FT3) was higher in children with ADHD—mainly in the inattentive presentation—but the findings varied widely across studies. Another marker, TPO-Ab, showed a small increase, but this came from only two studies, making the result less certain. For all other thyroid, growth, and appetite-related hormones, the researchers found no meaningful differences between children with ADHD and those without. While FT3 and TPO-Ab may be worth exploring in future research, the current evidence is not strong enough to consider them reliable biomarkers.
Background:
Recent progress in reproductive medicine has increased the number of children conceived via assisted reproductive techniques (ART). These include:
Although ART helps with infertility, there are concerns about its long-term effects on offspring, especially regarding neurodevelopment. Factors such as hormonal treatments, gamete manipulation, altered embryonic environments, as well as parental age and infertility, may influence brain development and raise the risk of neurodevelopmental and mental health disorders.
With previous studies finding conflicting results on a possible association between ART and increased risk of mental health disorders, an Indian research team has just published a new meta-analysis exploring this topic.
The Study:
Studies were eligible if they were observational (cohort, case-control, or cross-sectional), reported confounder-adjusted effect sizes for ADHD, and were published in English in peer-reviewed journals.
A meta-analysis of eight studies encompassing nearly twelve million individuals indicated a 7% higher prevalence of ADHD in offspring conceived via IVF/ICSI compared to those conceived naturally. The heterogeneity among studies was minimal, and no evidence of publication bias was observed.
The study’s 95% confidence interval ranged from 4% to 10%. Further analysis of five studies comprising almost nine million participants that distinguished outcomes by sex revealed that the increase in ADHD risk among female offspring was not statistically significant. In contrast, the elevated risk in male offspring persisted, though it was marginally significant, with the lower bound of the confidence limit at only 1%.
Results:
A meta-analysis of three studies (1.4 million participants) found a 13% higher rate of ADHD in children conceived via ovulation induction/intrauterine insemination (OI/IUI) compared to natural conception. The effect size, though doubled, remains small. Minimal heterogeneity and no publication bias were observed.
The team concluded, “The review found a small but statistically significant moderate certainty evidence of an increased risk of ADHD in those conceived through ART, compared to spontaneous conception. The magnitude of observed risk is small and is reassuring for parents and clinicians.”
Our Take-Away:
Overall, the meta-analysis points to a small, but measurable increase in ADHD diagnoses among children conceived through ART, but the effect sizes are modest and supported by moderate-certainty evidence. And we must always keep in mind that the researchers who wrote the original articles could not correct for all possible confounds. These findings suggest that while reproductive technologies may introduce slight variation in neurodevelopmental outcomes, the effects are small and uncertain. For families and clinicians, the results are generally reassuring: ART remains a safe and effective avenue to parenthood, and the results of this study should not be viewed as a prohibitive concern. Thoughtful developmental monitoring and open, evidence-based counseling can help ensure that ART-conceived children receive support that caters to their individual needs.
The Background:
Myopia is a growing global health concern linked to conditions like macular degeneration, glaucoma, and retinal detachment. Its prevalence has surged in recent decades; by 2050, an estimated 5 billion people will have myopia. The increase is especially marked in Asia – a survey in Taiwan reports that 84% of students aged 15 to 18 are myopic, with 24% severely affected.
Dopamine is an important neurotransmitter in the retina, involved in eye development, visual signaling, and refractive changes. The dopamine hypothesis, suggesting that retinal dopamine release helps prevent myopia, has emerged as a leading theory of myopia control.
Most studies show ADHD is highly heritable, often involving dopamine system genes. ADHD is strongly associated with dopaminergic abnormalities, especially in dopamine transporter function and release dynamics.
Medications for ADHD, like methylphenidate, atomoxetine, and clonidine, help regulate dopamine to reduce symptoms.
The Study:
Given dopamine’s critical involvement in both ADHD and myopia, a Taiwanese research team hypothesized that medications for ADHD that influence dopaminergic pathways may have a significant effect on myopia risk.
To evaluate this hypothesis, the team conducted a nationwide cohort study using data from Taiwan’s National Health Insurance (NHI) program, which covers 99% of the nation’s 23 million residents and provides access to comprehensive eye care and screenings. Taiwan requires visual acuity screenings beginning at age four, with annual examinations for school-aged children to promote the early detection of visual anomalies such as myopia.
Furthermore, ADHD medication and diagnosis are tracked through compulsory diagnostic codes. This permits an accurate assessment of the effects of dopaminergic medications on myopia risk.
Propensity score allocation using a multivariable logistic regression model was applied to reduce bias from confounding influences, pairing cohorts based on similar scores.
The Results:
Comparing 133,945 individuals with ADHD with an equal number without ADHD, untreated ADHD was associated with a 22% greater risk of myopia.
However, after adjusting for covariates (gender, age, insured premium, comorbidities, location, and urbanization level), the ADHD cohort receiving medication treatment showed a 39% decreased risk of myopia relative to the untreated ADHD cohort.
Narrowing this further to the ADHD cohort receiving dopaminergic medications reduced the risk of myopia by more than half (52%) relative to the untreated ADHD cohort.
Treatment with two dopaminergic medications reduced the risk by well over two-thirds (72%) relative to the untreated ADHD cohort.
There were no significant differences between methylphenidate, atomoxetine, and clonidine. Each reduced risk by about 50%.
The team did not directly compare the ADHD cohort receiving dopaminergic medications with the non-ADHD cohort. But if there were 122 cases of myopia in the ADHD cohort for every 100 cases in the non-ADHD cohort, and dopaminergic medications halved the cases in the ADHD cohort to about 60, that would represent a roughly 40% reduction in myopia risk relative to the non-ADHD cohort.
The team concluded, “our research indicates that pharmacologically treated ADHD children have a reduced risk of myopia. Conversely, untreated ADHD children are at a heightened risk relative to those without ADHD. Moreover, the cumulative effects of ADHD medications were found to notably decrease myopia incidence, emphasizing the protective influence of dopaminergic modulation in these interventions.”
The Take-Away:
Children with untreated ADHD are more likely to develop myopia, but those receiving dopaminergic medications had a substantially lower risk. The findings suggest that ADHD medications may help protect against myopia by boosting dopamine signaling. More research is needed before firmly drawing this conclusion, but this research could open the door to new approaches for preventing myopia in at-risk children.
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. More Info
By clicking, you agree to store cookies on your device to enhance navigation, analyze usage, and support marketing. More Info