February 22, 2021

How to Improve Driving Safety for Teens and Adults With ADHD

Drivers with ADHD are far more likely to be involved in crashes, to be at fault in crashes,to be in severe crashes, and to be killed in crashes. The more severe the ADHD symptoms, the higher the risk. Moreover, ADHD is often accompanied by comorbid conditions such as oppositional-defiant disorder, depression, and anxiety that further increase the risk.

What can be done to reduce this risk? A group of experts has offered the following consensus recommendations:

·   Use stimulant medications. While there is no reliable evidence on whether non-stimulant medications are of any benefit for driving, there is solid evidence that stimulant medications are effective in reducing risk. But there is also a rebound effect in many individuals after the medication wears off, in which performance actually becomes worse than if had been prior to medication. It is therefore important to time the taking of medication so that its period of effectiveness corresponds with driving times. If one has to drive right after waking up, it makes sense to take a rapid acting form. The same holds for late night driving that may require a quick boost.

·   Use a stick shift vehicle wherever possible. Stick shifts make drivers pay closer attention than automatic transmissions. The benefits in alertness are most notable in city traffic. But using a stick shift is far less beneficial in highway driving, where shifting is less frequent.

·  Avoid cruise control. Highways can be monotonous, making drivers more prone to boredom and distraction. That is even more true for those with ADHD, so it is best to keep cruise control turned off.

·   Avoid alcohol. Drinking and driving is a bad idea for everyone, but, once again, it's even worse for those with ADHD. Parents should consider a no-questions-asked policy of either picking up their teenager anytime and anywhere, or setting up an account with a ride-sharing service.·   Place the smartphone out of reach and hearing. Cell phone use is as about as likely to impair as alcohol. Hands-free devices only reduce this risk moderately, because they continue to distract. Texting can be deadly. Sending a short text or emoticon can be the equivalent of driving 100 yards with one's eyes closed. Either turn on Do Not Disturb mode, or, for even greater effectiveness, place the smart phone in the trunk.

·   Make use of automotive performance monitors. These can keep track of maximum speeds and sudden acceleration and braking, to verify that a teenager is not engaging in risky behaviors.

·   Take advantage of graduated driver's licensing laws wherever available. These laws forbid the presence of peers in the vehicle for the first several (for example, six) months of driving. Parents can extend that period for teenagers with ADHD, or set it as a condition in states that lack such laws.

·  Encourage practicing after obtaining a learner's permit. Teenagers with ADHD generally require more practice than those without. A pre-drive checklist can be a good place to start. For example:check the gas, check the mirrors, make sure the view through the windows is unobstructed, put cell phone in Do Not Disturb mode and place it out of reach, put on seat belt, scan for obstacles.

·   Consider outsourcing. Look for a driving school with a professional to teach good driving skills and habits.

Experts do not agree on whether to delay licensing for those with ADHD. On the one hand, teenagers with ADHD are 3-4 years behind in the development of brain areas responsible for executive functions that help control impulses and better guide behavior. Delaying licensing can reduce risk by about 20 percent. On the other hand, teens with ADHD are more likely to drive without a license, and no one wants to encourage that, however inadvertently. Moreover, graduated driver's licensing laws only have legal effect on teens who get their licenses at the customary age.

Paula A. Aduen, Daniel J. Cox, Gregory A.Fabiano, Annie A. Garner, Michael J. Kofler, "Expert Recommendations for Improving Driving Safety for Teens and Adult Drivers with ADHD," ADHD Rep. (2019) 27(4): 8-14.doi:10.1521/adhd.2019.27.4.8.

Related posts

No items found.

Swedish nationwide population study identifies top predictors of ADHD diagnoses among preschoolers

Most preschool-aged children diagnosed with ADHD also exhibit comorbid mental or developmental conditions. Long-term studies following these children into adulthood have demonstrated that higher severity of ADHD symptoms in early childhood is associated with a more persistent course of ADHD. 

The Study: 

Sweden has a single-payer national health insurance system that covers virtually all residents, facilitating nationwide population studies. An international study team (US, Brazil, Sweden) searched national registers for predictors of ADHD diagnoses among all 631,695 surviving and non-emigrating preschoolers born from 2001 through 2007.  

Preschool ADHD was defined by diagnosis or prescription of ADHD medications issued to toddlers aged three through five years old.  

Predictors were conditions diagnosed prior to the ADHD diagnosis. 

A total of 1,686 (2.7%) preschoolers were diagnosed with ADHD, with the mean age at diagnosis being 4.6 years. 

The Numbers:

Adjusting for sex and birth year, the team reported the following predictors, in order of magnitude: 

  • Previous diagnosis of autism spectrum disorder increased subsequent likelihood of ADHD diagnosis twentyfold. 
  • Previous diagnosis of intellectual disability increased subsequent likelihood of ADHD diagnosis fifteenfold. 
  • Previous diagnosis of speech/language developmental disorders and learning disorders, as well as motor and tic disorders, increased subsequent likelihood of ADHD diagnosis thirteen-fold. 
  • Previous diagnosis of sleep disorders increased subsequent likelihood of ADHD diagnosis fivefold. 
  • Previous diagnosis of feeding and eating disorders increased subsequent likelihood of ADHD diagnosis almost fourfold. 
  • Previous diagnosis of gastroesophageal reflux disease (GERD) increased subsequent likelihood of ADHD diagnosis 3.5-fold. 
  • Previous diagnosis of asthma increased subsequent likelihood of ADHD diagnosis 2.4-fold. 
  • Previous diagnosis of allergic rhinitis increased subsequent likelihood of ADHD diagnosis by 70%. 
  • Previous diagnosis of atopic dermatitis or unintentional injuries increased subsequent likelihood of ADHD diagnosis by 50%. 

The Conclusion: 

This large population study underscores that many conditions present in early childhood can help predict an ADHD diagnosis in preschoolers. Recognizing these risk factors early may aid in identifying and addressing ADHD sooner, hopefully improving outcomes for children as they grow

July 2, 2025

Northern Finnish Population Study Finds ADHD Slashes Higher Education Attainment, Comorbidity of ADHD + ODD much worse

Background:

Although ADHD typically begins in childhood, its symptoms frequently continue into adulthood, and it is widely acknowledged as having a lifelong prevalence for most persons with ADHD. 

ADHD symptoms are linked to poor academic performance, mainly due to cognitive issues like compromised working memory. These symptoms lead to long-term negative academic outcomes and difficulty in achieving higher educational degrees. 

Oppositional Defiant Disorder (ODD) often co-occurs with ADHD. In community samples, it appears in about 50–60% of those with ADHD. ODD symptoms include an angry or irritable mood, vindictiveness toward others, and argumentative or defiant behavior that lasts more than 6 months and significantly disrupts daily life.  

Since ODD tends to co-occur with ADHD, research on pure ODD groups without ADHD is limited, especially in community samples. This longitudinal study aimed to examine the impact of ADHD and ODD symptoms in adolescence on academic performance at age 16 and educational attainment by age 32. 

Study:

Finland, like other Nordic countries, has a single-payer health insurance system that includes virtually all residents. A Finnish research team used the Northern Finnish Birth Cohort to include all 9,432 children born from July 1, 1985, through June 30, 1986, and followed since then. 

ADHD symptoms were measured at age 16 using the Strengths and Weaknesses of ADHD symptoms and Normal-behaviors (SWAN) scale. 

Symptoms of ODD were screened using a 7-point rating scale similar to the SWAN scale, based on eight DSM-IV-TR criteria: “Control temper”, “Avoid arguing with adults”, “Follow adult requests or rules”, “Avoid deliberately annoying others”, “Assume responsibility for mistakes or misbehaviour”, “Ignore annoyances from others”, “Control anger and resentment”, and “Control spitefulness and vindictiveness.” 

Higher education attainments were determined at age 32. 

Results:

After adjusting for the educational attainments of the parents of the subjects, family type, and psychiatric disorders other than ADHD or ODD, males with ADHD symptoms at age 16 had a quarter, and females a little over a third, of the higher education attainments of peers without ADHD symptoms at age 32.  

With the same adjustments, males with ODD symptoms alone had two-thirds, and females 80%, of the higher education attainments of peers without ODD, but neither outcome was statistically significant. 

However, all participants with combined ADHD and ODD symptoms at age 16 had roughly one-fifth of the higher education attainments of peers without such symptoms upon reaching age 32. 

Interpretation: 

The team concluded, “The findings that emerged from this large longitudinal birth cohort study showed that the co-occurrence of ODD and ADHD symptoms in adolescence predicted the greatest deficits of all in educational attainment in adulthood.” 

This study highlights the significant, long-lasting impact that co-occurring ADHD and ODD symptoms can have on educational outcomes well into adulthood. It underscores the importance of addressing both disorders together during adolescence to help improve future academic success.

July 1, 2025

U.S. Nationwide Study Finds Down Syndrome Associated with 70% Greater Odds of ADHD

The Background:

Down syndrome (DS) is a genetic disorder resulting from an extra copy of chromosome 21. It is associated with intellectual disability. 

Three to five thousand children are born with Down syndrome each year. They have higher risks for conditions like hypothyroidism, sleep apnea, epilepsy, sensory issues, infections, and autoimmune diseases. Research on ADHD in patients with Down syndrome has been inconclusive. 

The Study:

The National Health Interview Survey (NHIS) is a household survey conducted by the National Center for Health Statistics at the CDC. 

Due to the low prevalence of Down syndrome, a Chinese research team used NHIS records from 1997 to 2018 to analyze data from 214,300 children aged 3 to 17, to obtain a sufficiently large and nationally representative sample to investigate any potential association with ADHD. 

DS and ADHD were identified by asking, “Has a doctor or health professional ever diagnosed your child with Down syndrome, Attention Deficit Hyperactivity Disorder (ADHD), or Attention Deficit Disorder (ADD)?” 

After adjusting for age, sex, and race/ethnicity, plus family highest education level, family income-to-poverty ratio, and geographic region, children and adolescents with Down syndrome had 70% greater odds of also having ADHD than children and adolescents without Down syndrome. There were no significant differences between males and females. 

The Take-Away:

The team concluded, “in a nationwide population-based study of U.S. children, we found that a Down syndrome diagnosis was associated with a higher prevalence of ASD and ADHD. Our findings highlight the necessity of conducting early and routine screenings for ASD and ADHD in children with Down syndrome within clinical settings to improve the effectiveness of interventions.” 

June 27, 2025