December 31, 2021

Is there a short-term relationship between air pollution and severity of ADHD symptoms?

Certain air pollutants can produce free radicals and inflammatory cytokines that can penetrate the central nervous system and affect behavior. Long-term exposure to air pollution has been associated with a higher risk of developing ADHD.

There has, however, been little focus on the short-term effects of exposure. Might there be any correlation between levels of air contaminants and subsequent healthcare visits of adolescents for severe spikes in ADHD symptoms (frequently but not always associated with comorbid conduct disorder, oppositional defiance disorder, or mood disorder), such as extreme hyperactivity, serious rule violations, theft, or aggression to people or animals?

A South Korean (Republic of Korea) research team explored this question through a nationwide cohort study using the database of the National Health Insurance Service, a single-payer system, that covers the entire population.

Using a time-series approach, they compared measured levels of three airborne pollutants - particulate matter with a diameter ≤ 10 μm (PM10), nitrogen oxide (NO2), produced by vehicular traffic, and sulfur dioxide (SO2), produced by manufacturing industries- with healthcare visits with a principal diagnosis of ADHD. They chose these three contaminants because they have been associated with ADHD in long-term studies. What made this approach feasible is that healthcare visits are typically unscheduled in Korea, making it possible to get quick medical attention.

The team divided the country into sixteen regions, looked at boys and girls separately, and also split adolescents into two age groups (10 to 14 years and 15 to 19 years). They estimated region-specific daily concentrations of the three pollutants from 318 government-run monitoring sites, located according to population density and distribution.

The researchers next calculated zero(same day) to five-day lag figures for ADHD-related healthcare visits in each region and ran meta-analyses on the time-series data.

There were 7,200 ADHD-related healthcare visits in the 2013-2015 study period. Major increases in PM10 levels were associated with increased ADHD-related healthcare visits from the day of the spike to three days later, peaking the day after the upturn. Major increases in SO2 levels were associated with increased ADHD-related healthcare visits from one to four days later, peaking the day following the upturn. Major increases in NO2 levels were associated with increased ADHD-related healthcare visits from one to four days later, peaking three days after the spike.

There were no significant differences between male and female adolescents, and between younger and older adolescents.

The strongest increased risk for ADHD-related healthcare visits was for NO2 spikes (up 47 percent), followed by SO2 spikes (up 27 percent), with PM10 spikes coming in last (up 12 percent).

Among the limitations, the authors were unable to evaluate the most hazardous types of particulate emissions, because the smaller-diameter PM2.5 particles (≤2.5 μm) have only been measured partially in South Korea since 2015. On the other hand, they pointed out that this was the first study to investigate associations between short-term air pollution exposure and ADHD-related healthcare visits, and that it included all ADHD-related healthcare visits in South Korea, making the possibility of selection bias negligible. They recommended conducting similar studies on other national populations.

Jiyoon Park, JiHoon Sohn, Sung Joon Cho, Hwa Yeon Seo, Il-Ung Hwang, Yun-Chul Hong, Kyoung-Nam Kim, "Association between short-term air pollution exposure and attention-deficit/hyperactivity disorder-related healthcare visits among adolescents: A nationwide time-series study," Environmental Pollution (2020) 226, https://doi.org/10.1016/j.envpol.2020.115369.

Related posts

No items found.

News Tuesday: Fidgeting and ADHD

A recent study delved into the connection between fidgeting and cognitive performance in adults with Attention-Deficit/Hyperactivity Disorder. Recognizing that hyperactivity often manifests as fidgeting, the researchers sought to understand its role in attention and performance during cognitively demanding tasks. They designed a framework to quantify meaningful fidgeting variables using actigraphy devices.

(Note: Actigraphy is a non-invasive method of monitoring human rest/activity cycles. It involves the use of a small, wearable device called an actigraph or actimetry sensor, typically worn on the wrist, similar to a watch. The actigraph records movement data over extended periods, often days to weeks, to track sleep patterns, activity levels, and circadian rhythms. In this study, actigraphy devices were used to measure fidgeting by recording the participants' movements continuously during the cognitive task. This data provided objective, quantitative measures of fidgeting, allowing the researchers to analyze its relationship with attention and task performance.)

The study involved 70 adult participants aged 18-50, all diagnosed with ADHD. Participants underwent a thorough screening process, including clinical interviews and ADHD symptom ratings. The analysis revealed that fidgeting increased during correct trials, particularly in participants with consistent reaction times, suggesting that fidgeting helps sustain attention. Interestingly, fidgeting patterns varied between early and later trials, further highlighting its role in maintaining focus over time.

Additionally, a correlation analysis validated the relevance of the newly defined fidget variables with ADHD symptom severity. This finding suggests that fidgeting may act as a compensatory mechanism for individuals with ADHD, aiding in their ability to maintain attention during tasks requiring cognitive control.

This study provides valuable insights into the role of fidgeting in adults with ADHD, suggesting that it may help sustain attention during challenging cognitive tasks. By introducing and validating new fidget variables, the researchers hope to standardize future quantitative research in this area. Understanding the compensatory role of fidgeting can lead to better management strategies for ADHD, emphasizing the potential benefits of movement for maintaining focus.

July 16, 2024

Identifying Autistic-Like Symptoms in Children with ADHD

NEWS TUESDAY: Identifying Autistic-Like Symptoms in Children with ADHD

A recent study investigated the presence of autistic-like symptoms in children diagnosed with Attention Deficit/Hyperactivity Disorder (ADHD). Given the overlapping social difficulties in both ADHD and Autism Spectrum Disorder (ASD), distinguishing between the two disorders can be challenging. This study aims to pinpoint specific patterns of autistic symptoms in children with ADHD, comparing them to those with ASD using the Autism Diagnostic Observation Schedule, 2nd edition (ADOS-2).

The research involved 43 school-age children divided into two groups:

  • ADHD Group (25 children): Initially referred for ASD symptoms but later diagnosed with ADHD.
  • ASD Group (18 children): Children diagnosed with ASD.

Researchers used ADOS-2 to evaluate differences in communication deficits, social interaction challenges, and repetitive behaviors between the two groups. The study also compared IQ, age, ADOS-2 domain scores, and externalizing/internalizing problems.

Key Findings:

  • Significant differences were found between the ADHD and ASD groups in ADOS-2 domain scores, including Social Affect, Restricted and Repetitive Behavior, and Total Score.
  • On an individual item level, children with ADHD displayed similar atypical behaviors as those with ASD in social-communication areas such as "Pointing" and "Gestures".
  • Both groups showed comparable frequencies in behaviors like "Stereotyped/idiosyncratic words or phrases", "Mannerisms", and "Repetitive interests and behaviors".

The study highlights the importance of identifying transdiagnostic domains that overlap between ADHD and ASD. The transdiagnostic domain refers to a set of symptoms or behaviors that are common across multiple diagnostic categories rather than being specific to just one. Identifying these domains in mental health practice and in psychological research is crucial to understanding, properly diagnosing, and treating conditions with overlapping features. This understanding could pave the way for tailored treatments addressing the specific needs of children with ADHD, particularly those exhibiting autistic-like symptoms.

July 9, 2024

Non-stimulant Medications for Adults with ADHD: An Overview

NEW STUDY: Non-stimulant Medications for Adults with ADHD: An Overview

Attention-Deficit/Hyperactivity Disorder (ADHD) in adults is commonly treated with stimulant medications such as methylphenidate and amphetamines. However, not all patients respond well to these stimulants or tolerate them effectively. For such cases, non-stimulant medications provide an alternative treatment approach.

Recent research by Brancati et al. reviews the efficacy and safety of non-stimulant medications for adult ADHD. Atomoxetine, a well-studied non-stimulant, has shown significant effectiveness in treating ADHD symptoms in adults. The review highlights the importance of considering dosage, treatment duration, safety, and the presence of psychiatric comorbidities when prescribing atomoxetine.

Additionally, certain antidepressants, including tricyclic compounds, bupropion, and viloxazine, which possess noradrenergic or dopaminergic properties, have demonstrated efficacy in managing adult ADHD. Antihypertensive medications, especially guanfacine, have also been found effective. Other medications like memantine, metadoxine, and mood stabilizers show promise, whereas treatments like galantamine, antipsychotics, and cannabinoids have not yielded positive results.

The expert opinion section of the review emphasizes that while clinical guidelines primarily recommend atomoxetine as a second-line treatment, several other non-stimulant options can be utilized to tailor treatments based on individual patient needs and comorbid conditions. Despite these advancements, the authors call for further research to develop and refine more personalized treatment strategies for adults with ADHD.

This review underscores the growing landscape of non-stimulant treatment options, offering hope for more personalized and effective management of ADHD in adults.

June 25, 2024