What effect does adult ADHD have on sleep?

A team of Spanish researchers performed a systematic search of the medical literature and found 28 studies that could be included in a series of meta-analyses of specific measures of sleep impairment. Except for a single meta-analysis with eight studies and 1,713 participants, however, all involved just three to five studies apiece, with anywhere from 121 to just over a thousand participants.

The team examined three sorts of measures:

·        Subjective measures, based on self-reporting by ADHD patients.
·        Polysomnography is an objective sleep study in which the subject is wired up and studied by technicians in a lab, usually overnight, monitoring multiple body functions, such as brain activity, eye movements, muscle activation, and heart rhythm.
·        Actigraphy, a non-invasive objective means of monitoring sleep. The subject wears an actimetry monitor, which is usually worn like a wristwatch on the non-dominant arm. Because it is minimally intrusive, the subject may wear it for a week or more while engaging in normal activities.

In the subjective measures, adults with ADHD generally reported substantially higher sleep impairments than non-ADHD controls. In the largest meta-analysis, covering eight studies and 1,713 participants, adults with ADHD reported moderately longer latency times for falling asleep than controls. In meta-analyses of five studies with between 834 and 1,130 participants, they also reported moderately poorer sleep quality, more frequent night awakenings, being moderately less rested upon awakening in the morning, and moderate-to-strongly greater daytime sleepiness. There was no significant difference in perceived sleep duration.

Polysomnography measures, on the other hand, failed to confirm these subjective impressions. No significant differences were found between adults with ADHD and controls for the initial latency period until onset of sleep, sleep efficiency, waking after the onset of sleep, total sleep time, stage one or stage two sleep, slow-wave sleep, REM (rapid eye movement) sleep, and latency period until REM sleep.

As mentioned above, polysomnography is conducted in lab settings, and therefore inevitably diverges from normal patterns of behavior. Actigraphy helps bridge that gap, by monitoring normal behavior, though with more limited types and precision of data analysis.

And indeed, a meta-analysis of four studies with 222 participants confirmed self-reports that sleep efficiency was moderate to strongly lower in adults with ADHD and that the latency period until the onset of sleep was markedly longer. On the other hand, it found no significant difference in true sleep.

The researchers also looked at prevalence statistics. Whereas the prevalence of sleep-onset insomnia in the general population has been reported in the range of 13 to 15 percent, a meta-analysis of four studies with 466 participants found fully two-thirds of adults with ADHD reporting insomnia, a greater than four-to-one ratio. Similarly, a meta-analysis of three studies with 458 participants found one-third reporting daytime sleepiness, which is twice the rate reported in the general population.

There was no sign of publication bias in any of these results. The authors cautioned, however, about the small number of studies involved, stating this “compromises the generalizability of the findings.” Also, some studies included patients undergoing pharmacological treatment for ADHD, “increasing the risk of confounding results.”

Moreover, “Sleep onset latency and sleep efficiency were not significantly impaired in the polysomnography, which was incongruent with the actigraphy results. This may be due to a difference in the evaluation context. Whereas polysomnography is considered the gold-standard measure to objectively assess sleep architecture, actigraphy shows a more ecological approach, with the evaluation being conducted in a more naturalistic context for a longer period. However, actigraphy has more environmental influence, which can compromise the data recorded and the interpretation of the results, whereas, in polysomnography, multiple variables can be controlled in the laboratory setting to increase the internal validity of the results. On the contrary, polysomnography studies can produce artifacts due to the unusual circumstances in the setting, so results may need to be interpreted with caution.”

The authors concluded, “The results found in the present study show the relevance of addressing sleep concerns in adult populations diagnosed with neurodevelopmental conditions.”

Jorge Lugo, Christian Fadeuilhe, Laura Gisbert, Imanol Setiena, Mercedes Delgado, Montserrat Corrales, Vanesa Richarte, Josep Antoni Ramos-Quiroga, “Sleep in adults with autism spectrum disorder and attention-deficit/hyperactivity disorder: A systematic review and meta-analysis,” EuropeanNeuropsychopharmacology (2020),https://doi.org/10.1016/j.euroneuro.2020.07.004.