January 26, 2022

How Does ADHD Affect Sexual Function?

This systematic review of the literature identified seven studies addressing ADHD and sexuality.

Sexual function

A Dutch study compared 136 persons with ADHD with two large surveys of the general Dutch population. They used both a self-report questionnaire, the Questionnaire for screening Sexual Dysfunction and a non-validated questionnaire especially constructed for the study. They found that males with ADHD reported a 50 percent higher rate of frequent masturbation than males in the general population. Both males and females were less than half as likely to be satisfied with their sex life. That was almost certainly linked to the fact that ADHD participants in the sample were less likely to be in a relationship.

A second study compared 79 ADHD participants with controls. Using a validated questionnaire, the Diagnostic Interview Schedule, to assess sexual function, they found a significant positive correlation between ADHD and the items "sex drive more than the average" and "recurrent thoughts about sex' by comparison with the control group.

A third study used two validated inventories “ the Derogates Sexual Functioning Inventory and the Social Sexual Orientation Inventory“ to assess sexual function among 27 young adult males. They found their sex drive to be higher than in the control group. 

Another study, also with 27 ADHD patients, compared them with two other groups, one with fiber mitosis (benign connective tissue cancers), and the other with both ADHD and fibromatosis. They used the validated Life Satisfaction Questionnaire to assess sexual function and found that those with ADHD reported lower sex life satisfaction.

On the other hand, the only large study, with over 14,000 participants, using a non-validated questionnaire to assess sexual function, found negligible associations between ADHD and the number of sexual partners, the frequency of having sex with one's partner, and the frequency of masturbation.

Sexual dysfunctions

The Dutch study mentioned above, comparing 136 ADHD outpatients with two large surveys of the general Dutch population, used a validated self-report questionnaire, the Questionnaire for screening Sexual Dysfunctions, and a non-validated questionnaire, specially designed for the study, the Questionnaire for screening Sexual Problems. It found the rate of sexual dysfunction among both males and females with ADHD to be over twice the level in the general population. Men were four times as likely to report problems with orgasm, 50 percent more likely to report premature ejaculation, and over ten times as likely to report sexual aversion. Women were over three times as likely to report sexual excitement problems, over twice as likely to report problems with orgasm, and over three times as likely to report sexual aversion. No significant differences existed between patients treated with psychostimulants and those without such treatment.

A second study, which used a validated questionnaire to compare 79 ADHD participants with controls, found significant correlations between ADHD and aversion to sex for men but none for women.

On the other hand, a third study, comparing 32 subjects with ADHD with 293 controls, found no significant difference in the prevalence of sexual dysfunctions. It used clinical interviews to assess ADHD, and a non-validated questionnaire to assess sexual dysfunctions.

A fourth study took a very different approach. It compared 38 individuals with premature ejaculation to 27 controls. It found more than ten times the rate of ADHD symptoms among those with premature ejaculation than in the control group. Significantly, it measures premature ejaculation directly, with a stopwatch.

Conclusion

The authors concluded, "This article provides the first systematic review of sexual health among subjects with ADHD and shows that the quality of sexual health among subjects with ADHD seems poor," but acknowledged "several limitations to our review. There are only a few studies for the topics we reviewed. For many studies, the sample size was small. The methodology and measurement instruments differed, which created a potential bias."

Indeed, the study with the largest sample size found negligible associations between ADHD and sexual function, contradicting studies with small sample sizes.

Only four of the studies, all with small sample sizes, examined sexual dysfunctions. Two found strong associations with ADHD, one found none, and the fourth had mixed results.

This points to a compelling need for further research on ADHD and sexuality, with larger sample sizes.

Lorenzo Soldati, MD, Francesco Bianchi-Demicheli, MD, Pauline Schockaert, MAS, John Köhl, MAS, MylèneBolmont, Ph.D., Roland Hasler, Ph.D., and Nader Perroud, MD, “SexualFunction, Sexual Dysfunctions, and ADHD: A Systematic Literature Review,” Journal of Sexual Medicine(2020),https://doi.org/10.1016/j.jsxm.2020.03.019.

Related posts

ADHD from Childhood to Adulthood

ADHD from Childhood to Adulthood

Although ADHD was conceived as a childhood disorder, we now know that many cases persist into adulthood. My colleagues and I charted the progression of ADHD through childhood, adolescence, and adulthood in our "Primer" about ADHD,http://rdcu.be/gYyV.  Although the lifetime course of ADHD varies among adults with the disorder, there are many consistent themes, which we described in the accompanying infographic.  Most cases of ADHD startin uterobefore the child is born. As a fetus, the future ADHD person carries versions of genes that increase the risk for the disorder. At the same time, they are exposed to toxic environments. These genetic and environmental risks change the developing brain, setting the foundation for the future emergence of ADHD.

In preschool, early signs of ADHD are seen in emotional lability, hyperactivity, disinhibited behavior, and speech, language, and coordination problems. The full-blown ADHD syndrome typically occurs in early childhood, but can be delayed until adolescence.  In some cases, the future ADHD person is temporarily protected from the emergence of ADHD due to factors such as high intelligence or especially supportive family and/or school environments. But as the challenges of life increase, this social, emotional, and intellectual scaffolding is no longer sufficient to control the emergence of disabling ADHD symptoms. Throughout childhood and adolescence, the emergence and persistence of the disorder are regulated by additional environmental risk factors such as family chaos along with the age-dependent expression of risk genes that exert different effects at different stages of development. During adolescence, most cases of ADHD persist and by the teenage years, many youths with ADHD have onset with a mood, anxiety, or substance use disorder.  Indeed, parents and clinicians need to monitor ADHD youth for early signs of these disorders. Prompt treatment can prevent years of distress and disability. By adulthood, the number of comorbid conditions has increased, including obesity, which likely has effects on future medical outcomes.

The ADHD adult tends to be very inattentive by showing fewer symptoms of hyperactivity and impulsivity. They remain at risk for substance abuse, low self-esteem, occupational failure, and social disability, especially if they are not treated for the disorder.  Fortunately, there are several classes of medications available to treat ADHD that are safe and effective. And the effects of these medications are enhanced by cognitive behavior therapy, as I've written about in prior blogs.

March 30, 2021

Adult ADHD and Comorbid Somatic Disease

Adult ADHD and Comorbid Somatic Disease

Although there has been much research documenting that ADHD adults are at risk for other psychiatric and substance use disorders, relatively little is known about whether ADHD puts adults at risk specifically for somatic medical disorders.  

Given that people with ADHD tend toward being disorganized and inattentive, and that they tend to favor short-term over long-term rewards, it seems logical that they should be at higher risk for adverse medical outcomes.  But what does the data say?

In a systematic review of the literature, Instances and colleagues have provided a thorough overview of this issue.  Although they found 126 studies, most were small and were of "modest quality".   Thus, their results must be considered to be suggestive, not definitive for most of the somatic conditions they studied.  

Also, they excluded articles about traumatic injuries because the association between ADHD and such injuries is well established. Using qualitative review methods, they classified associations as being a) well-established; b) tentative, or c) lacking sufficient data.

Only three conditions met their criteria for being a well-established association: asthma, sleep disorders, and obesity.  

They found tentative evidence implicating ADHD as a risk factor for three conditions: migraine headaches, celiac disease, and diseases of the circulatory system.  

These data are intriguing, but cannot tell us why ADHD people are at increased risk for somatic conditions. One possibility is that suffering from ADHD symptoms can lead to an unhealthy lifestyle, which leads to increased medical risk. Another possibility is that the biological systems that are dysregulated in ADHD are also dysregulated in some medical disorders.  For example, we know that there is some overlap between the genes that increase the risk for ADHD and those that increase the risk for obesity. We also know that the dopamine system has been implicated in both disorders.

Instances and colleagues also point out that some medical conditions might lead to symptoms that mimic ADHD. They give sleep-disordered breathing as an example of a condition that can lead to the symptom of inattention.    

But this seems to be the exception, not the rule. Other medical conditions co-occurring with ADHD seem to be true comorbidities, rather than the case of one disorder causing the other. Thus, primary care clinicians should be alert to the fact that many of their patients with obesity, asthma, or sleep disorders might also have ADHD.  

By screening such patients for ADHD and treating that disorder, you may improve their medical outcomes indirectly via increased compliance with your treatment regime and an improvement in health behaviors. We don't yet have data to confirm these latter ideas, as the relevant studies have not yet been done.

April 5, 2021

Adult Onset ADHD: Does it Exist? Is it Distinct from Youth Onset ADHD?

Adult Onset ADHD: Does it Exist? Is it Distinct from Youth Onset ADHD?

There is a growing interest (and controversy) in 'adult-onset ADHD. No current diagnostic system allows for the diagnosis of ADHD in adulthood, yet clinicians sometimes face adults who meet all criteria for ADHD, except for age at onset. Although many of these clinically referred adult-onset cases may reflect poor recall, several recent longitudinal population studies have claimed to detect cases of adult-onset ADHD that showed no signs of ADHD as a youth (Agnew-Blais, Polanczyk et al. 2016, Caye, Rocha, et al. 2016). They conclude, not only that ADHD can onset in adulthood, but that childhood-onset and adult-onset ADHD may be distinct syndromes(Moffitt, Houts, et al. 2015)

In each study, the prevalence of adult-onset ADHD was much larger than the prevalence of childhood-onset adult ADHD). These estimates should be viewed with caution.  The adults in two of the studies were 18-19 years old.  That is too small a slice of adulthood to draw firm conclusions. As discussed elsewhere (Faraone and Biederman 2016), the claims for adult-onset ADHD are all based on population as opposed to clinical studies.
Population studies are plagued by the "false positive paradox", which states that, even when false positive rates are low, many or even most diagnoses in a population study can be false.  

Another problem is that the false positive rate is sensitive to the method of diagnosis. The child diagnoses in the studies claiming the existence of adult-onset ADHDused reports from parents and/or teachers but the adult diagnoses were based on self-report. Self-reports of ADHD in adults are less reliable than informant reports, which raises concerns about measurement error.   Another longitudinal study found that current symptoms of ADHD were under-reported by adults who had had ADHD in childhood and over-reported by adults who did not have ADHD in childhood(Sibley, Pelham, et al. 2012).   These issues strongly suggest that the studies claiming the existence of adult-onset ADHD underestimated the prevalence of persistent ADHD and overestimated the prevalence of adult-onset ADHD.  Thus, we cannot yet accept the conclusion that most adults referred to clinicians with ADHD symptoms will not have a history of ADHD in youth.

The new papers conclude that child and adult ADHD are "distinct syndromes", "that adult ADHD is more complex than a straightforward continuation of the childhood disorder" and that adult ADHD is "not a neurodevelopmental disorder". These conclusions are provocative, suggesting a paradigm shift in how we view adulthood and childhood ADHD.   Yet they seem premature.  In these studies, people were categorized as adult-onset ADHD if full-threshold add had not been diagnosed in childhood.  Yet, in all of these population studies, there was substantial evidence that the adult-onset cases were not neurotypical in adulthood (Faraone and Biederman 2016).  Notably, in a study of referred cases, one-third of late adolescent and adult-onset cases had childhood histories of ODD, CD, and school failure(Chandra, Biederman, et al. 2016).   Thus, many of the "adult onsets" of ADHD appear to have had neurodevelopmental roots. 

Looking through a more parsimonious lens, Faraone and Biederman(2016)proposed that the putative cases of adult-onset ADHD reflect the existence of subthreshold childhood ADHD that emerges with full threshold diagnostic criteria in adulthood.   Other work shows that subthreshold ADHD in childhood predicts onsets of full-threshold ADHD in adolescence(Lecendreux, Konofal, et al. 2015).   Why is onset delayed in subthreshold cases? One possibility is that intellectual and social supports help subthreshold ADHD youth compensate in early life, with decompensation occurring when supports are removed in adulthood or the challenges of life increase.  A related possibility is that the subthreshold cases are at the lower end of a dimensional liability spectrum that indexes risk for onset of ADHD symptoms and impairments.  This is consistent with the idea that ADHD is an extreme form of a dimensional trait, which is supported by twin and molecular genetic studies(Larsson, Anckarsater, et al. 2012, Lee, Ripke, et al. 2013).  These data suggest that disorders emerge when risk factors accumulate over time to exceed a threshold.  Those with lower levels of risk at birth will take longer to accumulate sufficient risk factors and longer to onset.

In conclusion, it is premature to accept the idea that there exists an adult-onset form of ADHD that does not have its roots in neurodevelopment and is not expressed in childhood.   It is, however, the right time to carefully study apparent cases of adult-onset ADHD to test the idea that they are late manifestations of a subthreshold childhood condition.

April 7, 2021

Here’s What the Wall Street Journal Got Wrong about the Medication Treatment of ADHD Patients: A Lesson in Science Media Literacy

A recent Wall Street Journal article raised alarms by concluding that many children who start medication for ADHD will later end up on several psychiatric drugs. It’s an emotional topic that will make many parents, teachers, and even doctors worry: “Are we putting kids on a conveyor belt of medications?”

The article seeks to shine a light on the use of more than one psychiatric medication for children with ADHD.   My biggest worry about the article is that it presents itself as a scientific study because they analyzed a database.  It is not a scientific study.  It is a journalistic investigation that does not meet the standards of a scientific report..

The WJS brings attention to several issues that parents and prescribers should think about. It documents that some kids with ADHD are on more than one psychiatric medication, and some are receiving drugs like antipsychotics, which have serious side effects.  Is that appropriate? Access to good therapy, careful evaluation, and follow-up care can be lacking, especially for low-income families.  Can that be improved?  On that level, the article is doing something valuable: it’s shining a spotlight on potential problems.

It is, of course, fine for a journalist to raise questions, but it is not OK for them to pretend that they’ve done a scientific investigation that proves anything. Journalism pretending to be science is both bad science and bad journalism.

Journalism vs. Science: Why Peer Review Matters

Journalists can get big datasets, hire data journalists, and present numbers that look scientific.  But consider the differences between Journalism and Science. These types of articles are usually checked by editors and fact-checkers. Their main goals are:

 Is this fact basically correct?

 Are we being fair?

 Are we avoiding legal problems?

But editors are not qualified to evaluate scientific data analysis methods.  Scientific reports are evaluated by experts who are not part of the project.  They ask tough questions like: 

Exactly how did you define ADHD? 

How did you handle missing data? 

Did you address confounding? 

Did you confuse correlation with causation?

If the authors of the study cannot address these and other technical issues, the paper is rejected.

The WSJ article has the veneer of science but lacks its methodology.  

Correlation vs. Causation: A Classic Trap

The article’s storyline goes something like this:  A kid starts ADHD medication.  She has additional problems or side effects caused by the ADHD medications.   Because of that, the prescriber adds more drugs.  That leads to the patient being put on several drugs.  Although it is true that some ADHD youth are on multiple drugs, the WSJ is wrong to conclude that the medications for ADHD cause this to occur.  That simply confuses correlation with causation, which only the most naïve scientist would do.

In science, this problem is called confounding. It means other factors (like how severe or complex a child’s condition is) explain the results, not just the thing we’re focused on (medication for ADHD). 

The WSJ analyzed a database of prescriptions.  They did not survey the prescribers who made the prescriptions of the patients who received them.  So they cannot conclude that ADHD medication caused the later prescriptions, or that the later medications were unnecessary or inappropriate. 

Other explanations are very likely.   It has been well documented that youth with ADHD are at high risk for developing other disorders such as anxiety, depression,  and substance use.  The kids in the WSJ database might have developed these disorders and needed several medications.  A peer-reviewed article in a scientific journal would be expected to adjust for other diagnoses. If that is not possible, as it is in the case of the WSJ’s database, a journal would not allow the author to make strong conclusions about cause-and-effect.

Powerful Stories Don’t Always Mean Typical Stories

The article includes emotional accounts of children who seemed harmed by being put on multiple psychiatric drugs.  Strong, emotional stories can make rare events feel common.  They also frighten parents and patients, which might lead some to decline appropriate care. 

These stories matter. They remind us that each data point is a real person.  But these stories are the weakest form of data.  They can raise important questions and lead scientists to design definitive studies, but we cannot use them to draw conclusions about the experiences of other patients.  These stories serve as a warning about the importance of finding a qualified provider,  not as against the use of multiple medications.  That decision should be made by the parent or adult patient based on an informed discussion with the prescriber.

Many children and adults with ADHD benefit from multiple medications. The WSJ does not tell those stories, which creates an unbalanced and misleading presentation.  

Newspapers frequently publish stories that send the message:  “Beware!  Doctors are practicing medicine in a way that will harm you and your family.”   They then use case studies to prove their point.  The title of the article is, itself, emotional clickbait designed to get more readers and advertising revenue.  Don’t be confused by such journalistic trickery.

What Should We Conclude?

Here’s a balanced way to read the article.  It is true that some patients are prescribed more than one medication for mental health problems.  But the article does not tell us whether this prescribing practice is or is not warranted for most patients.  I agree that the use of antipsychotic medications needs careful justification and close monitoring.  I also agree that patients on multiple medications should be monitored closely to see if some of the medications can be eliminated.  Many prescribers do exactly that, but the WSJ did not tell their stories.  

It is not appropriate to conclude that ADHD medications typically cause combined pharmacotherapy or to suggest that combined pharmacotherapy is usually bad. The data presented by the WSJ does not adequately address these concerns.  It does not prove that medications for ADHD cause dangerous medication cascades.

We have to remember that even when a journalist analyzes data, that is not the same as a peer-reviewed scientific study. Journalism pretending to be science is both bad science and bad journalism.

Oppositional Defiant Disorder, Autism, and ADHD: New Research Examines the Connection

Oppositional Defiant Disorder (ODD)—a pattern of chronic irritability, anger, arguing, or defiance—is one of the most challenging behavioral conditions families and clinicians face. 

A new study involving 2,400 children ages 3–17 offers one of the clearest pictures yet. Using parent-reported data from the Pediatric Behavior Scale, researchers compared how often ODD appears in Autism spectrum disorder (ASD), ADHD-Combined presentation (ADHD-C), ADHD-Inattentive presentation (ADHD-I), and those with both ASD and ADHD.

Results

ADHD-Combined + ODD: The Highest-Risk Group

Children with ADHD-Combined presentation show both hyperactivity/impulsivity and inattention.  They had the highest ODD rates of any single diagnosis: 53% of kids with ADHD-Combined met criteria for ODD.

But when autism was added to ADHD-Combined, the prevalence jumped to 62%. This group also had the highest overall ODD scores, suggesting more severe or more impairing symptoms. 

This synergy matters: while autism alone increases ODD risk, the presence of ADHD-Combined is what pushes prevalence into the majority range. Other groups showed lower, but still significant, rates of ODD:

  • Autism + ADHD-Inattentive: 28%
  • Autism Only: 24%
  • ADHD-Inattentive Only: 14%

These findings echo what clinicians often see: children with inattentive ADHD, while struggling significantly with attention and learning, tend to show fewer behavioral conflict patterns than those with hyperactive/impulsive symptoms.

It is important to note that ODD is considered to have two main components. Across all diagnostic groups, ODD consistently broke down into these two components: either Irritable/Angry (emotion-based) or Oppositional/Defiant (behavior-based). But the balance between these components differed depending on diagnosis. Notably, Autism + ADHD-Combined showed higher levels of the irritable/angry component than ADHD-Combined alone. The oppositional/defiant component did not differ much between groups. This suggests that autism elevates the emotional side of ODD more than the behavioral side, which is important for clinicians to note before tailoring interventions.

Understanding ADHD , ASD, & Comorbidity:

The study notes that autism, ADHD, and ODD often cluster together, with 55–90% comorbidity in some combinations.

As the authors explain, The high co-occurrence of ADHD-Combined in autism (80% in our study) largely explains the high prevalence of ODD in autism.” 

Clinical Implications: Why This Study Matters

The researchers point to a straightforward recommendation: clinicians shouldn’t evaluate these conditions in isolation. A child referred for autism concerns might also be struggling with ADHD. A child referred for ADHD might have undiagnosed ODD. And ignoring one disorder can undermine treatment for the others.

Evidence-based interventions (behavioral therapy, parent training, school supports, and/or medication) can reduce symptoms across all three diagnoses while improving long-term outcomes, including overall quality of life.

November 21, 2025

What Sleep Patterns Reveal About Mental Health: A Look at New Research

Background:

Sleep is more than simple rest. When discussing sleep, we tend to focus on the quantity rather than the quality,  how many hours of sleep we get versus the quality or depth of sleep. Duration is an important part of the picture, but understanding the stages of sleep and how certain mental health disorders affect those stages is a crucial part of the discussion. 

Sleep is an active mental process where the brain goes through distinct phases of complex electrical rhythms. These phases can be broken down into non-rapid eye movement (NREM) and rapid eye movement (REM). The non-rapid eye movement phase consists of three stages of the four stages of sleep, referred to as N1, N2(light sleep), and N3(deep sleep). N4 is the REM phase, during which time vivid dreaming typically occurs. 

Two of the most important measurable brain rhythms occur during non-rapid eye movement (NREM) sleep. These electrical rhythms are referred to as slow waves and sleep spindles. Slow waves reflect deep, restorative sleep, while spindles are brief bursts of brain activity that support memory and learning.

The Study: 

A new research review has compiled data on how these sleep oscillations differ across psychiatric conditions. The findings suggest that subtle changes in nightly brain rhythms may hold important clues about a range of disorders, from ADHD to schizophrenia.

The Results:

ADHD: Higher Spindle Activity, Mixed Slow-Wave Findings

People with ADHD showed increased slow-spindle activity, meaning those brief bursts of NREM activity were more frequent or stronger than in people without ADHD. Why this happens isn’t fully understood, but it may reflect differences in how the ADHD brain organizes information during sleep. Evidence for slow-wave abnormalities was mixed, suggesting that deep sleep disruption is not a consistent hallmark of ADHD.

Autism: Inconsistent Patterns, but Some Signs of Lower Sleep Amplitude

Among individuals with autism spectrum disorder (ASD), results were less consistent. However, some studies pointed to lower “spindle chirp” (the subtle shift in spindle frequency over time) and reduced slow-wave amplitude. Lower amplitude suggests that the brain’s deep-sleep signals may be weaker or less synchronized. Researchers are still working to understand how these patterns relate to sensory processing, learning differences, or daytime behavior.

Depression: Lower Slow-Wave and Spindle Measures—Especially With Medication

People with depression tended to show reduced slow-wave activity and fewer or weaker sleep spindles, but this pattern appeared most strongly in patients taking antidepressant medications. Since antidepressants can influence sleep architecture, researchers are careful not to overinterpret the changes.  Nevertheless, these changes raise interesting questions about how both depression and its treatments shape the sleeping brain.

PTSD: Higher Spindle Frequency Tied to Symptoms

In post-traumatic stress disorder (PTSD), the trend moved in the opposite direction. Patients showed higher spindle frequency and activity, and these changes were linked to symptom severity which suggests that the brain may be “overactive” during sleep in ways that relate to hyperarousal or intrusive memories. This strengthens the idea that sleep physiology plays a role in how traumatic memories are processed.

Psychotic Disorders: The Most Consistent Sleep Signature

The clearest and most reliable findings emerged in psychotic disorders, including schizophrenia. Across multiple studies, individuals showed: Lower spindle density (fewer spindles overall), reduced spindle amplitude and duration, correlations with symptom severity, and cognitive deficits.

Lower slow-wave activity also appeared, especially in the early phases of illness. These results echo earlier research suggesting that sleep spindles, which are generated by thalamocortical circuits, might offer a window into the neural disruptions that underlie psychosis.

The Take-Away:

The review concludes with a key message: While sleep disturbances are clearly present across psychiatric conditions, the field needs larger, better-standardized, and more longitudinal studies. With more consistent methods and longer follow-ups, researchers may be able to determine whether these oscillations can serve as reliable biomarkers or future treatment targets.

For now, the take-home message is that the effects of these mental health disorders on sleep are real and measurable.