January 26, 2022

How Does ADHD Affect Sexual Function?

This systematic review of the literature identified seven studies addressing ADHD and sexuality.

Sexual function

A Dutch study compared 136 persons with ADHD with two large surveys of the general Dutch population. They used both a self-report questionnaire, the Questionnaire for screening Sexual Dysfunction and a non-validated questionnaire especially constructed for the study. They found that males with ADHD reported a 50 percent higher rate of frequent masturbation than males in the general population. Both males and females were less than half as likely to be satisfied with their sex life. That was almost certainly linked to the fact that ADHD participants in the sample were less likely to be in a relationship.

A second study compared 79 ADHD participants with controls. Using a validated questionnaire, the Diagnostic Interview Schedule, to assess sexual function, they found a significant positive correlation between ADHD and the items "sex drive more than the average" and "recurrent thoughts about sex' by comparison with the control group.

A third study used two validated inventories “ the Derogates Sexual Functioning Inventory and the Social Sexual Orientation Inventory“ to assess sexual function among 27 young adult males. They found their sex drive to be higher than in the control group. 

Another study, also with 27 ADHD patients, compared them with two other groups, one with fiber mitosis (benign connective tissue cancers), and the other with both ADHD and fibromatosis. They used the validated Life Satisfaction Questionnaire to assess sexual function and found that those with ADHD reported lower sex life satisfaction.

On the other hand, the only large study, with over 14,000 participants, using a non-validated questionnaire to assess sexual function, found negligible associations between ADHD and the number of sexual partners, the frequency of having sex with one's partner, and the frequency of masturbation.

Sexual dysfunctions

The Dutch study mentioned above, comparing 136 ADHD outpatients with two large surveys of the general Dutch population, used a validated self-report questionnaire, the Questionnaire for screening Sexual Dysfunctions, and a non-validated questionnaire, specially designed for the study, the Questionnaire for screening Sexual Problems. It found the rate of sexual dysfunction among both males and females with ADHD to be over twice the level in the general population. Men were four times as likely to report problems with orgasm, 50 percent more likely to report premature ejaculation, and over ten times as likely to report sexual aversion. Women were over three times as likely to report sexual excitement problems, over twice as likely to report problems with orgasm, and over three times as likely to report sexual aversion. No significant differences existed between patients treated with psychostimulants and those without such treatment.

A second study, which used a validated questionnaire to compare 79 ADHD participants with controls, found significant correlations between ADHD and aversion to sex for men but none for women.

On the other hand, a third study, comparing 32 subjects with ADHD with 293 controls, found no significant difference in the prevalence of sexual dysfunctions. It used clinical interviews to assess ADHD, and a non-validated questionnaire to assess sexual dysfunctions.

A fourth study took a very different approach. It compared 38 individuals with premature ejaculation to 27 controls. It found more than ten times the rate of ADHD symptoms among those with premature ejaculation than in the control group. Significantly, it measures premature ejaculation directly, with a stopwatch.

Conclusion

The authors concluded, "This article provides the first systematic review of sexual health among subjects with ADHD and shows that the quality of sexual health among subjects with ADHD seems poor," but acknowledged "several limitations to our review. There are only a few studies for the topics we reviewed. For many studies, the sample size was small. The methodology and measurement instruments differed, which created a potential bias."

Indeed, the study with the largest sample size found negligible associations between ADHD and sexual function, contradicting studies with small sample sizes.

Only four of the studies, all with small sample sizes, examined sexual dysfunctions. Two found strong associations with ADHD, one found none, and the fourth had mixed results.

This points to a compelling need for further research on ADHD and sexuality, with larger sample sizes.

Lorenzo Soldati, MD, Francesco Bianchi-Demicheli, MD, Pauline Schockaert, MAS, John Köhl, MAS, MylèneBolmont, Ph.D., Roland Hasler, Ph.D., and Nader Perroud, MD, “SexualFunction, Sexual Dysfunctions, and ADHD: A Systematic Literature Review,” Journal of Sexual Medicine(2020),https://doi.org/10.1016/j.jsxm.2020.03.019.

Related posts

ADHD from Childhood to Adulthood

ADHD from Childhood to Adulthood

Although ADHD was conceived as a childhood disorder, we now know that many cases persist into adulthood. My colleagues and I charted the progression of ADHD through childhood, adolescence, and adulthood in our "Primer" about ADHD,http://rdcu.be/gYyV.  Although the lifetime course of ADHD varies among adults with the disorder, there are many consistent themes, which we described in the accompanying infographic.  Most cases of ADHD startin uterobefore the child is born. As a fetus, the future ADHD person carries versions of genes that increase the risk for the disorder. At the same time, they are exposed to toxic environments. These genetic and environmental risks change the developing brain, setting the foundation for the future emergence of ADHD.

In preschool, early signs of ADHD are seen in emotional lability, hyperactivity, disinhibited behavior, and speech, language, and coordination problems. The full-blown ADHD syndrome typically occurs in early childhood, but can be delayed until adolescence.  In some cases, the future ADHD person is temporarily protected from the emergence of ADHD due to factors such as high intelligence or especially supportive family and/or school environments. But as the challenges of life increase, this social, emotional, and intellectual scaffolding is no longer sufficient to control the emergence of disabling ADHD symptoms. Throughout childhood and adolescence, the emergence and persistence of the disorder are regulated by additional environmental risk factors such as family chaos along with the age-dependent expression of risk genes that exert different effects at different stages of development. During adolescence, most cases of ADHD persist and by the teenage years, many youths with ADHD have onset with a mood, anxiety, or substance use disorder.  Indeed, parents and clinicians need to monitor ADHD youth for early signs of these disorders. Prompt treatment can prevent years of distress and disability. By adulthood, the number of comorbid conditions has increased, including obesity, which likely has effects on future medical outcomes.

The ADHD adult tends to be very inattentive by showing fewer symptoms of hyperactivity and impulsivity. They remain at risk for substance abuse, low self-esteem, occupational failure, and social disability, especially if they are not treated for the disorder.  Fortunately, there are several classes of medications available to treat ADHD that are safe and effective. And the effects of these medications are enhanced by cognitive behavior therapy, as I've written about in prior blogs.

March 30, 2021

Adult ADHD and Comorbid Somatic Disease

Adult ADHD and Comorbid Somatic Disease

Although there has been much research documenting that ADHD adults are at risk for other psychiatric and substance use disorders, relatively little is known about whether ADHD puts adults at risk specifically for somatic medical disorders.  

Given that people with ADHD tend toward being disorganized and inattentive, and that they tend to favor short-term over long-term rewards, it seems logical that they should be at higher risk for adverse medical outcomes.  But what does the data say?

In a systematic review of the literature, Instances and colleagues have provided a thorough overview of this issue.  Although they found 126 studies, most were small and were of "modest quality".   Thus, their results must be considered to be suggestive, not definitive for most of the somatic conditions they studied.  

Also, they excluded articles about traumatic injuries because the association between ADHD and such injuries is well established. Using qualitative review methods, they classified associations as being a) well-established; b) tentative, or c) lacking sufficient data.

Only three conditions met their criteria for being a well-established association: asthma, sleep disorders, and obesity.  

They found tentative evidence implicating ADHD as a risk factor for three conditions: migraine headaches, celiac disease, and diseases of the circulatory system.  

These data are intriguing, but cannot tell us why ADHD people are at increased risk for somatic conditions. One possibility is that suffering from ADHD symptoms can lead to an unhealthy lifestyle, which leads to increased medical risk. Another possibility is that the biological systems that are dysregulated in ADHD are also dysregulated in some medical disorders.  For example, we know that there is some overlap between the genes that increase the risk for ADHD and those that increase the risk for obesity. We also know that the dopamine system has been implicated in both disorders.

Instances and colleagues also point out that some medical conditions might lead to symptoms that mimic ADHD. They give sleep-disordered breathing as an example of a condition that can lead to the symptom of inattention.    

But this seems to be the exception, not the rule. Other medical conditions co-occurring with ADHD seem to be true comorbidities, rather than the case of one disorder causing the other. Thus, primary care clinicians should be alert to the fact that many of their patients with obesity, asthma, or sleep disorders might also have ADHD.  

By screening such patients for ADHD and treating that disorder, you may improve their medical outcomes indirectly via increased compliance with your treatment regime and an improvement in health behaviors. We don't yet have data to confirm these latter ideas, as the relevant studies have not yet been done.

April 5, 2021

Adult Onset ADHD: Does it Exist? Is it Distinct from Youth Onset ADHD?

Adult Onset ADHD: Does it Exist? Is it Distinct from Youth Onset ADHD?

There is a growing interest (and controversy) in 'adult-onset ADHD. No current diagnostic system allows for the diagnosis of ADHD in adulthood, yet clinicians sometimes face adults who meet all criteria for ADHD, except for age at onset. Although many of these clinically referred adult-onset cases may reflect poor recall, several recent longitudinal population studies have claimed to detect cases of adult-onset ADHD that showed no signs of ADHD as a youth (Agnew-Blais, Polanczyk et al. 2016, Caye, Rocha, et al. 2016). They conclude, not only that ADHD can onset in adulthood, but that childhood-onset and adult-onset ADHD may be distinct syndromes(Moffitt, Houts, et al. 2015)

In each study, the prevalence of adult-onset ADHD was much larger than the prevalence of childhood-onset adult ADHD). These estimates should be viewed with caution.  The adults in two of the studies were 18-19 years old.  That is too small a slice of adulthood to draw firm conclusions. As discussed elsewhere (Faraone and Biederman 2016), the claims for adult-onset ADHD are all based on population as opposed to clinical studies.
Population studies are plagued by the "false positive paradox", which states that, even when false positive rates are low, many or even most diagnoses in a population study can be false.  

Another problem is that the false positive rate is sensitive to the method of diagnosis. The child diagnoses in the studies claiming the existence of adult-onset ADHDused reports from parents and/or teachers but the adult diagnoses were based on self-report. Self-reports of ADHD in adults are less reliable than informant reports, which raises concerns about measurement error.   Another longitudinal study found that current symptoms of ADHD were under-reported by adults who had had ADHD in childhood and over-reported by adults who did not have ADHD in childhood(Sibley, Pelham, et al. 2012).   These issues strongly suggest that the studies claiming the existence of adult-onset ADHD underestimated the prevalence of persistent ADHD and overestimated the prevalence of adult-onset ADHD.  Thus, we cannot yet accept the conclusion that most adults referred to clinicians with ADHD symptoms will not have a history of ADHD in youth.

The new papers conclude that child and adult ADHD are "distinct syndromes", "that adult ADHD is more complex than a straightforward continuation of the childhood disorder" and that adult ADHD is "not a neurodevelopmental disorder". These conclusions are provocative, suggesting a paradigm shift in how we view adulthood and childhood ADHD.   Yet they seem premature.  In these studies, people were categorized as adult-onset ADHD if full-threshold add had not been diagnosed in childhood.  Yet, in all of these population studies, there was substantial evidence that the adult-onset cases were not neurotypical in adulthood (Faraone and Biederman 2016).  Notably, in a study of referred cases, one-third of late adolescent and adult-onset cases had childhood histories of ODD, CD, and school failure(Chandra, Biederman, et al. 2016).   Thus, many of the "adult onsets" of ADHD appear to have had neurodevelopmental roots. 

Looking through a more parsimonious lens, Faraone and Biederman(2016)proposed that the putative cases of adult-onset ADHD reflect the existence of subthreshold childhood ADHD that emerges with full threshold diagnostic criteria in adulthood.   Other work shows that subthreshold ADHD in childhood predicts onsets of full-threshold ADHD in adolescence(Lecendreux, Konofal, et al. 2015).   Why is onset delayed in subthreshold cases? One possibility is that intellectual and social supports help subthreshold ADHD youth compensate in early life, with decompensation occurring when supports are removed in adulthood or the challenges of life increase.  A related possibility is that the subthreshold cases are at the lower end of a dimensional liability spectrum that indexes risk for onset of ADHD symptoms and impairments.  This is consistent with the idea that ADHD is an extreme form of a dimensional trait, which is supported by twin and molecular genetic studies(Larsson, Anckarsater, et al. 2012, Lee, Ripke, et al. 2013).  These data suggest that disorders emerge when risk factors accumulate over time to exceed a threshold.  Those with lower levels of risk at birth will take longer to accumulate sufficient risk factors and longer to onset.

In conclusion, it is premature to accept the idea that there exists an adult-onset form of ADHD that does not have its roots in neurodevelopment and is not expressed in childhood.   It is, however, the right time to carefully study apparent cases of adult-onset ADHD to test the idea that they are late manifestations of a subthreshold childhood condition.

April 7, 2021

Oppositional Defiant Disorder, Autism, and ADHD: New Research Examines the Connection

Oppositional Defiant Disorder (ODD)—a pattern of chronic irritability, anger, arguing, or defiance—is one of the most challenging behavioral conditions families and clinicians face. 

A new study involving 2,400 children ages 3–17 offers one of the clearest pictures yet. Using parent-reported data from the Pediatric Behavior Scale, researchers compared how often ODD appears in Autism spectrum disorder (ASD), ADHD-Combined presentation (ADHD-C), ADHD-Inattentive presentation (ADHD-I), and those with both ASD and ADHD.

Results

ADHD-Combined + ODD: The Highest-Risk Group

Children with ADHD-Combined presentation show both hyperactivity/impulsivity and inattention.  They had the highest ODD rates of any single diagnosis: 53% of kids with ADHD-Combined met criteria for ODD.

But when autism was added to ADHD-Combined, the prevalence jumped to 62%. This group also had the highest overall ODD scores, suggesting more severe or more impairing symptoms. 

This synergy matters: while autism alone increases ODD risk, the presence of ADHD-Combined is what pushes prevalence into the majority range. Other groups showed lower, but still significant, rates of ODD:

  • Autism + ADHD-Inattentive: 28%
  • Autism Only: 24%
  • ADHD-Inattentive Only: 14%

These findings echo what clinicians often see: children with inattentive ADHD, while struggling significantly with attention and learning, tend to show fewer behavioral conflict patterns than those with hyperactive/impulsive symptoms.

It is important to note that ODD is considered to have two main components. Across all diagnostic groups, ODD consistently broke down into these two components: either Irritable/Angry (emotion-based) or Oppositional/Defiant (behavior-based). But the balance between these components differed depending on diagnosis. Notably, Autism + ADHD-Combined showed higher levels of the irritable/angry component than ADHD-Combined alone. The oppositional/defiant component did not differ much between groups. This suggests that autism elevates the emotional side of ODD more than the behavioral side, which is important for clinicians to note before tailoring interventions.

Understanding ADHD , ASD, & Comorbidity:

The study notes that autism, ADHD, and ODD often cluster together, with 55–90% comorbidity in some combinations.

As the authors explain, The high co-occurrence of ADHD-Combined in autism (80% in our study) largely explains the high prevalence of ODD in autism.” 

Clinical Implications: Why This Study Matters

The researchers point to a straightforward recommendation: clinicians shouldn’t evaluate these conditions in isolation. A child referred for autism concerns might also be struggling with ADHD. A child referred for ADHD might have undiagnosed ODD. And ignoring one disorder can undermine treatment for the others.

Evidence-based interventions (behavioral therapy, parent training, school supports, and/or medication) can reduce symptoms across all three diagnoses while improving long-term outcomes, including overall quality of life.

November 21, 2025

What Sleep Patterns Reveal About Mental Health: A Look at New Research

Background:

Sleep is more than simple rest. When discussing sleep, we tend to focus on the quantity rather than the quality,  how many hours of sleep we get versus the quality or depth of sleep. Duration is an important part of the picture, but understanding the stages of sleep and how certain mental health disorders affect those stages is a crucial part of the discussion. 

Sleep is an active mental process where the brain goes through distinct phases of complex electrical rhythms. These phases can be broken down into non-rapid eye movement (NREM) and rapid eye movement (REM). The non-rapid eye movement phase consists of three stages of the four stages of sleep, referred to as N1, N2(light sleep), and N3(deep sleep). N4 is the REM phase, during which time vivid dreaming typically occurs. 

Two of the most important measurable brain rhythms occur during non-rapid eye movement (NREM) sleep. These electrical rhythms are referred to as slow waves and sleep spindles. Slow waves reflect deep, restorative sleep, while spindles are brief bursts of brain activity that support memory and learning.

The Study: 

A new research review has compiled data on how these sleep oscillations differ across psychiatric conditions. The findings suggest that subtle changes in nightly brain rhythms may hold important clues about a range of disorders, from ADHD to schizophrenia.

The Results:

ADHD: Higher Spindle Activity, Mixed Slow-Wave Findings

People with ADHD showed increased slow-spindle activity, meaning those brief bursts of NREM activity were more frequent or stronger than in people without ADHD. Why this happens isn’t fully understood, but it may reflect differences in how the ADHD brain organizes information during sleep. Evidence for slow-wave abnormalities was mixed, suggesting that deep sleep disruption is not a consistent hallmark of ADHD.

Autism: Inconsistent Patterns, but Some Signs of Lower Sleep Amplitude

Among individuals with autism spectrum disorder (ASD), results were less consistent. However, some studies pointed to lower “spindle chirp” (the subtle shift in spindle frequency over time) and reduced slow-wave amplitude. Lower amplitude suggests that the brain’s deep-sleep signals may be weaker or less synchronized. Researchers are still working to understand how these patterns relate to sensory processing, learning differences, or daytime behavior.

Depression: Lower Slow-Wave and Spindle Measures—Especially With Medication

People with depression tended to show reduced slow-wave activity and fewer or weaker sleep spindles, but this pattern appeared most strongly in patients taking antidepressant medications. Since antidepressants can influence sleep architecture, researchers are careful not to overinterpret the changes.  Nevertheless, these changes raise interesting questions about how both depression and its treatments shape the sleeping brain.

PTSD: Higher Spindle Frequency Tied to Symptoms

In post-traumatic stress disorder (PTSD), the trend moved in the opposite direction. Patients showed higher spindle frequency and activity, and these changes were linked to symptom severity which suggests that the brain may be “overactive” during sleep in ways that relate to hyperarousal or intrusive memories. This strengthens the idea that sleep physiology plays a role in how traumatic memories are processed.

Psychotic Disorders: The Most Consistent Sleep Signature

The clearest and most reliable findings emerged in psychotic disorders, including schizophrenia. Across multiple studies, individuals showed: Lower spindle density (fewer spindles overall), reduced spindle amplitude and duration, correlations with symptom severity, and cognitive deficits.

Lower slow-wave activity also appeared, especially in the early phases of illness. These results echo earlier research suggesting that sleep spindles, which are generated by thalamocortical circuits, might offer a window into the neural disruptions that underlie psychosis.

The Take-Away:

The review concludes with a key message: While sleep disturbances are clearly present across psychiatric conditions, the field needs larger, better-standardized, and more longitudinal studies. With more consistent methods and longer follow-ups, researchers may be able to determine whether these oscillations can serve as reliable biomarkers or future treatment targets.

For now, the take-home message is that the effects of these mental health disorders on sleep are real and measurable.

Population Study Links ADHD Medication with Reduced Criminality, Suicides, Automotive Crashes, Substance Abuse

Many studies have shown that ADHD is associated with increased risks of suicidal behavior, substance misuse, injuries, and criminality. As we often discuss in our blogs, treatments for ADHD include medication and non-medication options, such as CBT (Cognitive Behavioral Therapy). While non-drug approaches are often used for young children or mild cases of ADHD, medications – both stimulants and non-stimulants – are common for adolescents and adults. 

Global prescriptions for ADHD drugs have risen significantly in recent years, raising questions about their safety and effectiveness. Randomized controlled trials have demonstrated that medication can help reduce the core symptoms of ADHD. However, research from these trials still offers limited or inconclusive insights into wider and more significant clinical outcomes, such as suicidal behavior and substance use disorder.

An international study team conducted a nationwide population study using the Swedish national registers. Sweden has a single-payer national health insurance system, which covers nearly every resident, enabling such studies. The researchers examined all Swedish residents aged 6 to 64 who received their first ADHD diagnosis between 2007 and 2018. Analyses of criminal behavior and transport accidents focused on a subgroup aged 15 to 64, since individuals in Sweden must be at least 15 years old to be legally accountable for crimes or to drive.

The team controlled for confounding factors, including demographics (age at ADHD diagnosis, calendar year, sex, country of birth, highest education (using parental education for those under 25), psychiatric and physical diagnoses, dispensations of psychotropic drugs, and health care use (outpatient visits and hospital admissions for both psychiatric and non-psychiatric reasons).

Time-varying covariates from the previous month covered diagnoses, medication dispensations, and healthcare use. During the study, ADHD treatments licensed in Sweden included amphetamine, atomoxetine, dexamphetamine, guanfacine, lisdexamphetamine, and methylphenidate.

After accounting for covariates, individuals diagnosed with ADHD who received medication treatment showed better outcomes than those who did not. Specifically:

-Suicidal behaviors dropped by roughly 15% in both first-time and recurrent cases.

-Initial criminal activity decreased by 13%, with repeated offences falling by 25%.

-Substance abuse initiation declined by 15%, while recurring substance abuse was reduced

by 25%.

-First automotive crashes were down 12%, and subsequent crashes fell by 16%.

There was no notable reduction in first-time accidental injuries, and only a marginally significant 4% decrease in repeated injuries.

The team concluded, “Drug treatment for ADHD was associated with beneficial effects in reducing the risks of suicidal behaviours, substance misuse, transport accidents, and criminality, but not accidental injuries when considering first event rate. The risk reductions were more pronounced for recurrent events, with reduced rates for all five outcomes.”